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Many engineering systems can be characterized as a large scale collection of inter-
acting subsystems each having access to local information, making local decisions,
having local interactions with neighbors, and seeking to optimize local objectives that
may well be in conflict with other subsystems. The analysis and design of such con-

trol systems falls under the broader framework of “complex and distributed systems”.

M LT

Other names include “multi-agent control,” “cooperative control,” “networked con-
trol,” as well as “team theory” or “swarming.” Regardless of the nomenclature, the
central challenge remains the same. That is to derive desirable collective behaviors
through the design of individual agent control algorithms. The potential benefits of
distributed decision architectures include the opportunity for real-time adaptation (or
self-organization) and robustness to dynamic uncertainties such as individual compo-
nent failures, non-stationary environments, and adversarial elements. These benefits
come with significant challenges, such as the complexity associated with a potentially
large number of interacting agents and the analytical difficulties of dealing with over-

lapping and partial information.
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This dissertation focuses on dealing with the distributed nature of decision mak-
ing and information processing through a non-cooperative game-theoretic formulation.
The interactions of a distributed/multi-agent control system are modeled as a non-
cooperative game among agents with the desired collective behavior being expressed
as a Nash equilibrium. In large scale multi-agent systems, agents are inherently lim-
ited in both their observational and computational capabilities. Therefore, this disser-
tation focuses on learning algorithms that can accommodate these limitations while
still guaranteeing convergence to a Nash equilibrium. Furthermore, in this dissertation
we illustrate a connection between the fields of game theory and cooperative control
and develop several suitable learning algorithms for a wide variety of cooperative con-
trol problems. This connection establishes a framework for designing and analyzing
multi-agent systems. We demonstrate the potential benefits of this framework on sev-
eral cooperative control problems including dynamic sensor coverage, consensus, and

distributing routing over a network, as well as the mathematical puzzle Sudoku.
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CHAPTER 1

Overview

Many engineering systems can be characterized as a large scale collection of inter-
acting subsystems each having access to local information, making local decisions,
having local interactions with neighbors, and seeking to optimize local objectives that
may well be in conflict with other subsystems. A representative sampling includes au-
tonomous vehicle teams, cooperative robotics, distributed computing, electronic com-
merce, wireless networks, sensor networks, traffic control, social networks, and com-

bat systems.

The analysis and design of such control systems falls under the broader framework
of “complex and distributed systems”. Other names include “multi-agent control,”
“cooperative control,” “networked control,” as well as “team theory” or “swarming.”
Regardless of the nomenclature, the central challenge remains the same. That is to
derive desirable collective behaviors through the design of individual agent control
algorithms. The potential benefits of distributed decision architectures include the
opportunity for real-time adaptation (or self-organization) and robustness to dynamic
uncertainties such as individual component failures, non-stationary environments, and
adversarial elements. These benefits come with significant challenges, such as the
complexity associated with a potentially large number of interacting agents and the

analytical difficulties of dealing with overlapping and partial information.

This dissertation focuses on dealing with the distributed nature of decision mak-

ing and information processing through a non-cooperative game-theoretic formulation.



The interactions of a distributed/multi-agent control system are modeled as a non-
cooperative game among agents, with the desired collective behavior being expressed
as a Nash equilibrium. The emphasis is on simple learning algorithms that guarantee
convergence to a Nash equilibrium. Furthermore, the algorithms must have minimal
computational requirements to accommodate implementation in a wide variety of en-

gineered systems.

The need for simple learning algorithms can be motivated by looking at the prob-
lem of distributed routing over a network. In such a problem, there is a large number
of self interested players seeking to utilize a common network. Since the available re-
sources in the network are finite, players’ objectives are very much in conflict with one
another. The sheer quantity of available information makes centralized dissemination
or processing infeasible. When modeling the players’ interaction as a non-cooperative
game, the central issue involves how players make decisions. Or more precisely, what
information do players need to base their decisions on so as to guarantee some form of
a collective behavior? For example, does each player need to know the routing strate-

gies of all other players or would some form of aggregate information be acceptable?

Motivated by the inherent information restrictions in the problem of distributed
routing over networks, in Chapter 3 we consider multi-player repeated games involv-
ing a large number of players with large strategy spaces and enmeshed utility struc-
tures. In these “large-scale” games, players are inherently faced with limitations in
both their observational and computational capabilities. Accordingly, players in large-
scale games need to make their decisions using algorithms that accommodate limi-
tations in information gathering and processing. This disqualifies some of the well
known decision making models such as “Fictitious Play” (FP) [MS96a], in which each
player must monitor the individual actions of every other player and must optimize

over a high dimensional probability space.



In this chapter, we analyze the properties of the learning algorithm Joint Strategy
Fictitious Play (JSFP), a close variant of FP. We demonstrate that JSFP alleviates both
the informational and computational burden of FP. Furthermore, we introduce JSFP
with inertia, i.e., a probabilistic reluctance to change strategies, and establish the con-
vergence to a pure Nash equilibrium in all generalized ordinal potential games in both
cases of averaged or exponentially discounted historical data. We illustrate JSFP with
inertia on the specific class of congestion games, a subset of generalized ordinal poten-
tial games. In particular, we illustrate the main results on a distributed traffic routing

problem.

In Chapter 4, we extend the results of JSFP by introducing an entire class of learn-
ing algorithms that can accommodate such observational and processing restrictions.
To that end, we build upon the idea of no-regret algorithms [HMOO] to strengthen the
performance guarantees for implementation in multi-agent systems. No-regret algo-
rithms have been proposed to control a wide variety of multi-agent systems. The appeal
of no-regret algorithms is that they are easily implementable in large scale multi-agent
systems because players make decisions using only regret based information. Further-
more, there are existing results proving that the collective behavior will asymptotically
converge to a set of points of “no-regret” in any game. We illustrate, through a sim-
ple example, that no-regret points need not reflect desirable operating conditions for a

multi-agent system.

Multi-agent systems often exhibit an additional structure, i.e., being weakly acyclic,
that has not been exploited in the context of no-regret algorithms. In this chapter, we
introduce a modification of the traditional no-regret algorithms by (i) exponentially
discounting the memory and (ii) bringing in a notion of inertia in players’ decision
process. We show how these modifications can lead to an entire class of regret based

algorithms that providelmost sureconvergence to a pure Nash equilibrium in any



weakly acyclic game.

The last, and most informationally restrictive, class of learning algorithms that
we will consider in this dissertation are payoff based algorithms. In such a scenario,
playersonly have access to (i) the action they played and (ii) the utility (possibly
noisy) they received. In a transportation network, this translates to drivers only having
information about the congestion actually experienced. Drivers are now unaware of
the traffic conditions on any alternative routes, which was previously a requirement

for the implementation of either JSFP or any regret based learning algorithm.

In Chapter 5, we focus on payoff based learning algorithms on the specific class of
weakly acyclic games. We introduce three different payoff based processes for increas-
ingly general scenarios and prove that after a sufficiently large number of stages, player
actions constitute a Nash equilibrium at any stage with arbitrarily high probability. The
first learning algorithm, calle8afe Experimentatiqiguarantees convergence to an op-
timal Nash equilibrium in any identical interest game. Such an equilibrium is called
optimal because it maximizes the payoff to all players. The second learning algorithm,
calledSimple Experimentatigrguarantees convergence to a Nash equilibrium in any
weakly acyclic game. The third learning algorithm, callea@mple Experimentation
guarantees convergence to a Nash equilibrium in any weakly acyclic game even in the

presence of noisy utility functions.

The second topic of Chapter 5 is centered around the inefficiency of Nash equilib-
ria in routing problems. It is well known that a Nash equilibrium may not represent
a desirable operating point in a routing problem as it typically does not minimize the
total congestion on the network. Motivated by this inefficiency concern, we derive an
approach for modifying player utility functions through tolls and incentives in conges-
tion games, a special class of weakly acyclic games, to guarantee that a centralized

objective can be realized as a Nash equilibrium. We illustrate this equilibrium refine-



ment method on a well studied distributed routing problem known as Braess’ Paradox.

In the following chapter, the focus shifts from the development of suitable learning
algorithms to understanding how one would design a multi-agent systems for a coop-
erative control problem. In particular, how would a global planner design each agent’s
local utility function such that a central objective could be realized as the outcome
of a repeated non-cooperative game? We seek to answer this question by highlight-
ing a connection between cooperative control problems and potential games. This
connection to potential games provides a structural framework with which to study
cooperative control problems and suggests an approach for utility design. However,
we would like to note that utility design for multi-agent systems is still very much an

open issue.

In Chapter 6, we present a view of cooperative control using the language of learn-
ing in games. We review the game theoretic concepts of potential games and weakly
acyclic games and demonstrate how several cooperative control problems such as con-
sensus, dynamic sensor coverage, and even the mathematical puzzle Sudoku can be
formulated in these settings. Motivated by this connection, we build upon game theo-
retic concepts to better accommodate a broader class of cooperative control problems.
In particular, we introduce two extensions of the learning algorithm Spatial Adaptive
Play. The first extension calldmnary Restricted Spatial Adaptive Plagcommodates
restricted action sets caused by limitations in agent capabilities. The second exten-
sion calledSpatial Adaptive Play with Group Based Decisi@sommodates group
based collaborations in the decision making process. Furthermore, we also introduce
a new class of games, callsdmetimes weakly acyclic gamésr time-varying util-
ity functions and action sets, and provide distributed algorithms for convergence to an

equilibrium.

Lastly, we illustrate the potential benefits of this connection on several cooper-



ative control problems. For the consensus problem, we demonstrate that consensus
can be reached even in an environment with non-convex obstructions. For the func-
tional consensus problem, we demonstrate an approach that will allow agents to reach
consensus on a specific consensus point which is some function of the initial condi-
tions. For the dynamic sensor coverage problem, we demonstrate how autonomous
sensors can distribute themselves using only local information in such a way as to
maximize the probability of detecting a particular event over a given mission space.
Lastly, we demonstrate how the popular mathematical game of Sudoku can be mod-
eled as a noncooperative game and solved using the learning algorithms discussed in

this dissertation.

1.1 Main Contributions of this Dissertation

To summarize, we will now restate the main contributions of this dissertation.

e We introduce the learning algorithm Joint Strategy Fictitious Play with inertia
and establish almost sure convergence to a pure Nash equilibrium in all gener-
alized ordinal potential games in both cases of averaged or exponentially dis-

counted historical data.

e We introduce a modification of the traditional no-regret algorithms by (i) ex-
ponentially discounting the memory and (ii) bringing in a notion of inertia in
players’ decision process. We show how these modifications can lead to an en-
tire class of regret based algorithms that provide almost sure convergence to a

pure Nash equilibrium in any weakly acyclic game.

e We introduce the payoff based algorithm Safe Experimentation and establish
almost sure convergence to an optimal Nash equilibrium in any identical interest

game.



We introduce the payoff based algorithm Simple Experimentation and establish

almost sure convergence to a pure Nash equilibrium in any weakly acyclic game.

We introduce the payoff based algorithm Sample Experimentation and establish
almost sure convergence to a pure Nash equilibrium in any weakly acyclic game

even in the presence of noisy utility functions.

We derive an approach for modifying player utility functions through tolls and
incentives in congestion games to guarantee that a centralized objective can be

realized as a Nash equilibrium.

We establish a connection between potential games and cooperative control and
demonstrate the potential benefits of this connection on several cooperative con-
trol problems including dynamic sensor coverage, consensus, and distributing

routing over a network, as well as the mathematical puzzle Sudoku.

We derive an equivalent definition for weakly acyclic games that explicitly high-

lights the connection between weakly acyclic and potential games.

We introduce an extension of the learning algorithm Spatial Adaptive Play, called
binary Restricted Spatial Adaptive Play, to accommodate restricted action sets
caused by agent limitations. We establish probabilistic convergence to an action

profile that maximizes the potential function in any potential game.

We introduce an extension of the learning algorithm Spatial Adaptive Play, called
Spatial Adaptive Play with Group Based Decisions, to accommodate group based
collaborations in the decision making process. We establish probabilistic conver-
gence to an action profile that maximizes the potential function in any potential

game.



e We introduce a new class of games, called sometimes weakly acyclic games, for
time-varying utility functions and action sets, and provide distributed algorithms

for almost sure convergence to a universal Nash equilibrium.



CHAPTER 2
Background

In this section, we will present a background of the game theoretic concepts used in this
dissertation. We refer the readers to [FT91, You98, You05] for a more comprehensive

review.

2.1 Finite Strategic-Form Games

We consider a finite strategic-form game witkplayer setP := {Py, ..., P,} where
each playefP; € P has an action setl; and a utility functionU; : A — R where
A=A x--- x A,. We will refer to a finite strategic-form game as just a game and
we will sometimes use a single symbol, e@,,to represent the entire game, i.e., the

player setP, action setsA;, and utility functiongU;.

An example of a two player game is illustrated in matrix form in Figure 2.1. In this
game, each player has two actions or strategies and a utility function represented by
the payoff matrix. Once each player has selected his action, both players receive their
associated reward. For example, if player 1 chobgeand player 2 choosBown

player 1 would receive a reward of 2 while player 2 would receive a reward of 1.

For an action profilee = (aq, as, ...,a,) € A, leta_; denote the profile of player

actionsother thanplayer?;, i.e.,

a_; = {ala ey Qi1 g1y - - Jan} .



Player 2 Player 2
chooses Up chooses Down

chgi)a}syeesr%op O y O 2 y l

chog)slgeéolttom 1 y 2 0 y O

Payoff Matrix

Figure 2.1: Example of a Finite Strategic-Form Game

With this notation, we will sometimes write a profileof actions aga;, a_;). Sim-
ilarly, we may writeU;(a) as Uj(a;, a—;). Furthermore, letd_; = [], .5 A; de-
note the set of possible collective actions of all players other than pfayand let

P_i=A{P1,...,Pi_1,Pis1,- .., Pn} denote the set of players other than plager

2.2 Forms of Equilibrium

In this section we will introduce three forms of equilibrium that will be discussed in
this dissertation: Nash equilibrium, correlated equilibrium (CE), and coarse correlated

equilibrium (CCE).

2.2.1 Nash Equilibrium

The most well known form of an equilibrium is the Nash equilibrium.

Definition 2.2.1 (Pure Nash Equilibrium). An action profilea* € A is called a pure

Nash equilibrium if for all players; € P,

Ui(al,a*;) = max Uj(a;, a*;). (2.1)

a;€A;

10



Furthermore, if the above condition is satisfied with a unique maximizer for every

playerP; € P, thena* is called a strict Nash equilibrium.

A Nash equilibrium represents a scenario for which no player has an incentive to

unilaterally deviate.

The concept of Nash equilibrium also extends to mixed strategy spaces. Let the
strategyof playerP; be defined ap; € A(A;), whereA(A4,;) is the set of probability
distributions over the finite set of action%. We will adopt the convention thaf
represents the probability that play@rwill select actiorn; andzaieAi pit = 1. Ifall
playersP; € P play independently according to their personal strategy A(.A;),
then the expected utility of playé®; for strategyp; is defined as

Uipisp—s) = Y Us(@)p{'p3 ... pjy,
acA
wherep_;, = {p1,...,pi—1,pi+1,- - -, Pn} denotes the collection of strategies of players

other than playep;.

Definition 2.2.2 (Nash Equilibrium). A strategy profile* = {p7,...,p!} is called a
Nash equilibrium if for all players; € P,

(pi 1) Jmax (pi, P~;) (2.2)

2.2.2 Correlated Equilibrium

In this section we will define a broader class of equilibria for which there may be corre-
lations among the players. To that end,det A(.4) denote a probability distribution
over the set of joint actiongl. We will adopt the convention that is the probability

of the joint actiorz and) | , 2* = 1. In the special case that all playgPs € P play

independently according to their personal strategy A(.A4;), as was the case in the

11



definition of the Nash equilibrium, then
2 =preyt o,
wherea = (a1, as,...,a,).

Definition 2.2.3 (Correlated Equilibrium). The probability distributior: is a corre-
lated equilibrium if for all playersP; € P and for all actionsa;, a; € A;,

Z Us(ai, a_;)z@*=) > Z U(a}, a_;)z @2, (2.3)

a_i€A_; a_ ;€A
To motivate this definition consider the following scenario. First, a joint action

a € Ais randomly drawn according to the probability distributiore A(.4). Next,
each player is informed of only his particular actignbut not the actions of the other
players. Finally, each player is given the opportunity to change his action. The condi-
tion for correlated equilibrium in (2.3) states that each pl&y&r conditional expected
payoff for actiona; is at least as good as his conditional expected payoff for any other
actiona; # a;. In other words, a probability distributionis a correlated equilibrium
if and only if no player would seek to change their action from the outcome, randomly

drawn according ta, even after his part has been revealed.

Notice that all Nash equilibria are in fact correlated equilibria.

2.2.3 Coarse Correlated Equilibrium

We will now relax the requirements on correlated equilibrium. Before doing so, we
will discuss marginal distributions. Given the joint distributiog A(.A), the marginal
distribution of all players other than playgy is
22 = Z Zlawa—i),
al€A;

Note thatz_; is a well defined probability distribution in(A_;).

12



Definition 2.2.4 (Coarse Correlated Equilibrium). The probability distributior: is
a coarse correlated equilibrium if for all playef8; € P and for all actionsa, € A,

ZUi(a)z“Z Z Ui(al,a_;)2";". (2.4)

aceA a_;EA_;

To motivate this definition, consider the following scenario which differs slightly
from the correlated equilibrium scenario. Before the joint actiois drawn, each
playerP; is given the opportunity to opt out, in which case the player can select any
actiona; € A; that he wishes. If the player does not opt out, he commits himself to
playing his part of the action-tuplerandomly drawn according to the distributien
In words, a distributiorr is a coarse correlated equilibrium if under this scenario no

player would choose to opt out given that all other players opt to stay in.

If the joint distributionz is a correlated equilibrium, then we know that for any
actiona; € A;

Z Z Ui(ai7a_i)z(ai,(l_i) > Z Z Ui((lé,a_i)z(a“a_i)’

a;€EA; a_;€EA_; a;€EA; a_;€EA_;

= Y Ulahas) 3o A,

a_;EA_; a;€EA;

= Z Ui(al,a_s)z"".

a_;EA_;

This implies that for any actioa, € A;

Z Ui(a)z®* > Z Ui(al,a_;)2";".

acA a_i€A
Therefore, all correlated equilibria, and hence Nash equilibria, are in fact coarse corre-
lated equilibria as illustrated in Figure 2.2. Under the condition that all players select
their action independently, as was the case in the definition of the Nash equilibrium,

then the definition of correlated, coarse correlated, and Nash equilibria are all equiva-

lent.

13



Coarse
Correlated Correlated

Figure 2.2: Relationship Between Nash, Correlated, and Coarse Correlated Equilibria.

2.2.4 Equilibrium Comparison

The main difference between Nash, correlated, and coarse correlated equilibria is
whether a player is committed conditionally or unconditionally to a random draw of
a given joint distribution: € A(.A). Table 2.1, taken from [You05], summarizes the

main differences between the three forms of equilibria.

Conditional Participation Unconditional Participation
Independent Probabilities Nash Nash

Correlated Probabilities Correlated Coarse Correlated

Table 2.1: Relationship Between Nash, Correlated, and Coarse Correlated Equilibria.

We will now present a simple two player example, from [YouO5], to highlight
the differences between the set of Nash equilibria and the set of correlated or coarse
correlated equilibria. Note that the set of correlated equilibria and the set of coarse

correlated equilibria are equivalent in two player games.

Consider the following two player game with payoff matrix as illustrated if Fig-
ure 2.3. For any joint action, the first entry is the payoff for player 1 and the second
entry is the payoff for player 2. For exampl&;(L,L) = 1 andUy(L,L) = 1.

Letz = {21 LR RL LLY be a probability distribution over the joint action space
A={LL,LR,RL, RR}.

14



P2 P2

piN__ L R piN__L R
L1 1,11 0,0 L| z+ | Z'®
R|0,0 1,1 R| zR | Z¥R
Payoff Matrix Joint Distribution

Figure 2.3: Example of an Identical Interest Game

In this example, there are two strict Nash equilib(ia, L) and (R, R). Further-
more, there is one mixed Nash equilibriup, = pl = 1/2 andpf = pf = 1/2. A
joint distributionz is a correlated equilibrium if and only if the off-diagonal probabil-

ities do not exceed the diagonal probabilities, i.e.,
max{z %, 2 < min{zH, 2RH)
Therefore, the set of correlated equilibria is significantly larger than the set of Nash

equilibria.

2.3 Classes of Games

In this dissertation we will consider four classes of games: identical interest games,
potential games, congestion games, and weakly acyclic games. Each class of games

imposes a restriction on the admissible utility functions.
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2.3.1 Identical Interest Games

The most restrictive class of games that we will review in this dissertation is identical
interest games. In such a game, the players’ utility functidig!” , are chosen to be

the same. That is, for some functipn A — R,

for everyP; € P and for everya € A. It is easy to verify that all identical inter-
est games have at least one pure Nash equilibrium, namely any action prisfde

maximizesp(a). An example of an identical interest game is illustrated in Figure 2.3.

2.3.2 Potential Games

A significant generalization of an identical interest game is a potential game. In a
potential game, the change in a player’s utility that results from a unilateral change
in strategy equals the change in the global utility. Specifically, there is a function
¢ : A — R such that for every playeP;, € P, for everya_; € A_;, and for every

a.,a’ € A,

Ui(a;, CLi) - Ui(@;/, a*i) = gb(a;, a—i) - ¢(a2/7 afi>- (2.5)

When this condition is satisfied, the game is called a potential game with the potential
function¢. It is easy to see that in potential games, any action profile maximizing the
potential function is a pure Nash equilibrium, hence every potential game possesses at

least one such equilibrium.

An example of a two player potential game with associated potential function is

illustrated if Figure 2.4.

We will also consider a more general class of potential games knogeresalized

ordinal potential games In generalized ordinal potential games there is a function
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P2 P2

piN\__ L R piN__L
L 2,0 3,2 Ll 2 4
R| 0,0| 0,1 R O 1
Payoff Matrix Potential

Figure 2.4: Example of a Potential Game with Potential Function

¢ : A — R such that for every playeP; < P, for everya_; € A_;, and for every

a.,a € A,

(R

Ui(aj,a—;) = Ui(a},a_;) >0 = ¢(a;,a_;) — ¢(ai,a_;) > 0.

2.3.3 Congestion Games

Congestion games are a specific class of games in which player utility functions have

a special structure.

In order to define a congestion game, we must specify the actiondsefind
utility function, U;(-), of each player. Towards this end, [Rtdenote a finite set of

“resources”. For each resources R, there is an associated “congestion function”
¢ :{0,1,2,..} = R

that reflects the cost of using the resource as a function of the number of players using

that resource.

The action setA;, of each playerp;, is defined as the set of resources available to
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player?;, i.e.,
A; C 2R,

where2”® denotes the set of subsets®f Accordingly, an actiong; € A;, reflects a
selection of (multiple) resources, C R. A player is “using” resource if r € a;. For
an action profilew € A, leto,(a) denote the total number of players using resource
r,i.e., [{i:r € a;}|. In a congestion game, the utility of play® using resources
indicated bya; depends only on the total number of players using the same resources.
More precisely, the utility of playeP; is defined as

Uz(a) = ZCT(UT<G>>' (26)

rea;

Any congestion game with utility functions as in (2.6) is a potential game [Ros73] with

potential function

dla) =D > (k). (2.7)

In fact, every congestion game is a potential game and every finite potential game is

isomorphic to a congestion game [MS96Db].

2.3.4 Weakly Acyclic Games

Consider any finite gam€&' with a setA of action profiles. Abetter reply paths a
sequence of action profiles, a?, ..., a* such that, for every < ¢ < L — 1, there

- . E . Z e

is exactly one playeP;, such that i)a{, # a;™, ii) a’,, = !, andiii) U;,(a") <
U;,(a**1). In other words, one player moves at a time, and each time a player moves

he increases his own utility.

Suppose now that is a potential game with potential functign Starting from
an arbitrary action profile € A, construct a better reply path= a', a2, ..., " until

it can no longer be extended. Note first that such a path cannot cycle back on itself,

18



becausey is strictly increasing along the path. Singeis finite, the path cannot be
extended indefinitely. Hence, the last element in a maximal better reply path from any

joint action,a, must be a Nash equilibrium ¢f.

This idea may be generalized as follows. The gdime weakly acycliaf for any
a € A, there exists a better reply path startingneand ending at some pure Nash
equilibrium of G [You98, YouO05]. Potential games are special cases of weakly acyclic

games.

An example of a two player weakly acyclic game is illustrated in Figure 2.5.

- —
2,1 > 1,2+« 0,0 2,1 1,2+ 0,0
-1,2+ 2,1+ 0,0 1,2 « 2,1+ 0,0
0,0 00—11 0,0 00 —11

u u

Weakly Acyclic Not Weakly Acyclic

Under Better Replies Under Better Replies

Figure 2.5: Example of a Weakly Acyclic Game

2.4 Repeated Games

In a repeated game, at each time {0,1,2,...}, each playefP, € P simultane-
ously chooses an actian(t) € A; and receives the utility/;(a(t)) wherea(t) =
(a1(t),...,an(t)). Each playefP;, € P chooses his action;(t) at timet simultane-

ously according to a probability distributigrn(¢), which we will refer to as thetrategy
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of playerP; at timet. A player’s strategy at timeécan rely only on observations from
times{0, 1,2, ...,t — 1}. Different learning algorithms are specified by both the as-
sumptions on available information and the mechanism by which the strategies are

updated as information is gathered.

We will review three main classes of learning algorithms in this dissertation: full
information, virtual payoff based, and payoff based. For a detailed review of learning

in games we direct the reader to [FL98, You98, You05, HS98, Wei95, Sam97].

2.4.1 Full Information Learning Algorithms

The most informationally sophisticated class of learning algorithms is full information.
In full information learning algorithms, each player knows the functional form of his
utility function and is capable of observing the actions of all other players at every time
step. The strategy adjustment mechanism of pl&eran be written in the general

form

pi(t) = F;(a(0), ...,a(t — 1); U;).

In this setting, players may develop probabilistic models for the actions of other
players using past observations. Based off these models, players may seek to maximize
some form of an expected utility. An example of a learning algorithm, or strategy
adjustment mechanism, of this form is the well known fictitious play [MS96a]. We

will review fictitious play in Section 3.2.1.

2.4.2 Virtual Payoff Based Learning Algorithms

We will now relax the requirements of full information learning algorithms. In virtual
payoff based algorithms, players are now unaware of the structural form of their utility

function. Furthermore, players also are not capable of observing the actions of all
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players. However, players are endowed with the ability to assess the utility that they
would have received for alternative action choices. For example, suppose that the

action played at time is a(t). In virtual payoff based dynamics, each plag&mwith
|4

action set4; = {a}, ..., a; '} has access to the following information:

Us(a}, a_i(t))
a(t) = : ,
Ui(a, a_i(t))

where|.4;| denotes the cardinality of the action sét

The strategy adjustment mechanism of pleiyecan be written in the general form

pi(t) = F({Ui(as,a—i(0) Yaears - -5 {Uslas, a—i(t — 1)) }aea, )-

An example of a learning algorithm, or strategy adjustment mechanism, of this form
is the well known regret matching [HMO0O]. We will review regret matching in Sec-
tion 4.2. Virtual payoff based learning algorithms will be the focus of Chapters 3 and
4.

2.4.3 Payoff Based Learning Algorithms

Payoff based learning algorithms are the most informationally restrictive class of learn-
ing algorithms. Now, playersnly have access to (i) the action they played and (ii) the
utility (possibly noisy) they received. In this setting, the strategy adjustment mecha-

nism of playerP; takes on the form
pi(t) = Fi({a:(0), Ui(a(0)}, ..., {as(t — 1), Ui(a(t — 1))}). (2.8)

We will discuss payoff based learning algorithms extensively in Chapter 5.

21



CHAPTER 3

Joint Strategy Fictitious Play with Inertia for Potential

Games

In this chapter we consider multi-player repeated games involving a large number of
players with large strategy spaces and enmeshed utility structures. In these “large-
scale” games, players are inherently faced with limitations in both their observational
and computational capabilities. Accordingly, players in large-scale games need to
make their decisions using algorithms that accommodate limitations in information
gathering and processing. This disqualifies some of the well known decision making
models such as “Fictitious Play” (FP), in which each player must monitor the individ-
ual actions of every other player and must optimize over a high dimensional probability
space. We will show that Joint Strategy Fictitious Play (JSFP), a close variant of FP,
alleviates both the informational and computational burden of FP. Furthermore, we
introduce JSFP with inertia, i.e., a probabilistic reluctance to change strategies, and
establish the convergence to a pure Nash equilibrium in all generalized ordinal po-
tential games in both cases of averaged or exponentially discounted historical data.
We illustrate JSFP with inertia on the specific class of congestion games, a subset of
generalized ordinal potential games. In particular, we illustrate the main results on a
distributed traffic routing problem and derive tolling procedures that can lead to opti-

mized total traffic congestion.
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3.1 Introduction

We consider “large-scale” repeated games involving a large number of players, each of
whom selects a strategy from a possibly large strategy set. A player’s reward, or utility,
depends on the actions taken by all players. The game is repeated over multiple stages,
and this allows players to adapt their strategies in response to the available information
gathered over prior stages. This setup falls under the general subject of “learning
in games” [FL98, You05], and there are a variety of algorithms and accompanying

analysis that examine the long term behavior of these algorithms.

In large-scale games players are inherently faced with limitations in both their
observational and computational capabilities. Accordingly, players in such large-scale
games need to make their decisions using algorithms that accommodate limitations in
information gathering and processing. This limits the feasibility of different learning
algorithms. For example, the well-studied algorithm “Fictitious Play” (FP) requires
individual players to individually monitor the actions of other players and to optimize
their strategies according to a probability distribution function over the joint actions of
other players. Clearly, such information gathering and processing is not feasible in a

large-scale game.

The main objective of this chapter is to study a variant of FP called Joint Strategy
Fictitious Play (JSFP) [FL98, FK93, MS97]. We will argue that JSFP is a plausible
decision making model for certain large-scale games. We will introduce a modification
of JSFP to include inertia, in which there is a probabilistic reluctance of any player to
change strategies. We will establish that JSFP with inertia converges to a pure Nash
equilibrium for a class of games known as generalized ordinal potential games, which

includes so-called congestion games as a special case [Ros73].

Our motivating example for a large-scale congestion game is distributed traffic
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routing [BL85], in which a large number of vehicles make daily routing decisions to
optimize their own objectives in response to their own observations. In this setting,
observing and responding to the individual actions of all vehicles on a daily basis
would be a formidable task for any individual driver. A more realistic measurement
on the information tracked and processed by an individual driver is the daily aggregate
congestion on the roads that are of interest to that driver [BPK91]. It turns out that

JSFP accommodates such information aggregation.

We will now review some of the well known decision making models and discuss
their limitations in large-scale games. See the monographs [FL98, You98, You05,

HS98, Wei95] and survey article [Har05] for a more comprehensive review.

The well known FP algorithm requires that each player views all other players
as independent decision makers [FL98]. In the FP framework, each player observes
the decisions made by all other players and computes the empirical frequencies (i.e.
running averages) of these observed decisions. Then, each player best responds to the
empirical frequencies of other players’ decisions by first computing the expected utility
for each strategy choice under the assumption that the other players will independently
make their decisions probabilistically according to the observed empirical frequencies.
FP is known to be convergent to a Nash equilibrium in potential games, but need not
converge for other classes of games. General convergence issues are discussed in

[HMO3b, SA05, AS04].

The paper [LESO05] introduces a version of FP, called “sampled FP”, that seeks to
avoid computing an expected utility based on the empirical frequencies, because for
large scale games, this expected utility computation can be prohibitively demanding.
In sampled FP, each player selects samples from the strategy space of every other
player according to the empirical frequencies of that player’s past decisions. A player

then computes an average utility for each strategy choice based off of these samples.
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Each player still has to observe the decisions made by all other players to compute
the empirical frequencies of these observed decisions. Sampled FP is proved to be
convergent in identical interest games, but the number of samples needed to guarantee

convergence grows unboundedly.

There are convergent learning algorithms for a large class of coordination games
called “weakly acyclic” games [You98]. In adaptive play [You93] players have finite
recall and respond to the recent history of other players. Adaptive play requires each
player to track the individual behavior of all other players for recall window lengths
greater than one. Thus, as the size of player memory grows, adaptive play suffers from

the same computational setback as FP.

It turns out that there is a strong similarity between the JSFP discussed herein and
the regret matching algorithm [HMOOQ]. A player’s regret for a particular choice is
defined as the difference between 1) the utility that would have been received if that
particular choice was played for all the previous stages and 2) the average utility ac-
tually received in the previous stages. A player using the regret matching algorithm
updates a regret vector for each possible choice, and selects actions according to a
probability proportional to positive regret. In JSFP, a player chooses an action by
myopically maximizing the anticipated utility based on past observations, which is ef-
fectively equivalent to regret modulo a bias term. A current open question is whether
player choices would converge in coordination-type games when all players use the
regret matching algorithm (except for the special case of two-player games [HM03a]).
There are finite memory versions of the regret matching algorithm and various gen-
eralizations [You05], such as playing best or better responses to regret over the last
m stages, that are proven to be convergent in weakly acyclic games when players use
some sort of inertia. These finite memory algorithms do not require each player to

track the behavior of other players individually. Rather, each player needs to remem-
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ber the utilities actually received and the utilities that could have been received in the
last m stages. In contrast, a player using JSFP best responds according to accumu-
lated experience over the entire history by using a simple recursion which can also

incorporate exponential discounting of the historical data.

There are also payoff based dynamics, where each player observes only the actual
utilities received and uses a Reinforcement Learning (RL) algorithm [SB98, BT96]
to make future choices. Convergence of player choices when all players use an RL-
like algorithm is proved for identical interest games [LC03, LC0O5b, LC05a] assuming
that learning takes place at multiple time scales. Finally, the payoff based dynamics
with finite-memory presented in [HS04] leads to a Pareto-optimal outcome in generic

common interest games.

Regarding the distributed routing setting of Section 3.4, there are papers that ana-
lyze different routing strategies in congestion games with “infinitesimal” players, i.e.,
a continuum of players as opposed to a large, but finite, number of players. Refer-
ences [FV04, FV05, FRV06] analyze the convergence properties of a class of routing
strategies that is a variation of the replicator dynamics in congestion games, also re-
ferred to as symmetric games, under a variety of settings. Reference [BELO6] analyzes
the convergence properties of no-regret algorithms in such congestion games and also
considers congestion games with discrete players, as considered in this paper, but the

results hold only for a highly structured symmetric game.

The remainder of this chapter is organized as follows. Section 3.2, sets up JSFP
and goes on to establish convergence to a pure Nash equilibrium for JSFP with iner-
tia in all generalized ordinal potential games. Section 3.3 presents a fading memory
variant of JSFP, and likewise establishes convergence to a pure Nash equilibrium. Sec-
tion 3.4 presents an illustrative example for traffic congestion games. Section 3.4 goes

on to illustrate the use of tolls to achieve a socially optimal equilibrium and derives
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conditions for this equilibrium to be unique.

3.2 Joint Strategy Fictitious Play with Inertia

Consider a finite game with-player setP? := {P;, ..., P, } where each playeP; € P

has an action sed; and a utility functionl; : A — R whereAd = A; x ... x A,,.

In arepeated gamas described in Section 2.4, at every stage{0, 1,2, ...}, each
player,P;, simultaneously selects an actiajit) € A;. This selection is a function of
the information available to playé?; up to stage. Both the action selection function

and the available information depend on the underlying learning process.

3.2.1 Fictitious Play

We start with the well known Fictitious Play (FP) process [FL98]. Fictitious Play is an

example of a full information learning algorithm.

Define theempirical frequencyq (t), as the percentage of stages at which player
P; has chosen the actian € A; up to timet — 1, i.e.,

t—1

) =+ 3 Hailr) = ai),

t
=0

whereq;(k) € A; is playerP;’s action at timek and /{-} is the indicator function.

Now define the empirical frequency vector for playgras

g;"
a\Ai|
q;
where|.A;| is the cardinality of the action set;.

The action of playefP; at timet is based on the (incorrect) presumption that other
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players are playingandomlyandindependenthaccording to their empirical frequen-
cies. Under this presumption, the expected utility for the actjon A; is
Ui(ai, q-i(t)) = Z Ui(ai, a—;) H g5’ (t), (3.1)
a_;€A_; a;€a_;
whereq_;(t) == {q:(t), ..., ¢i—1(t), ¢i+1(t), ..., qn(t) } @and A_; := X, .A,. Inthe FP
process, playeP; uses this expected utility by selecting an action at tinrom the

set

BR;(q-i(t)) :={a; € A; : Ui(a;,q—i(t)) = max U;(a;, q—i(t))}.

a; EA;

The setBR;(q—;(t)) is called playerP;’s best response t@_;(¢). In case of a non-

unique best response, play@rmakes a random selection fraBWR;(q_;(t)).

It is known that the empirical frequencies generated by FP converge to a Nash
equilibrium in potential games [MS96Db].

Note that FP as described above requires each player to observe the actions made
by every other individual player. Moreover, choosing an action based on the predic-
tions (3.1) amounts to enumerating all possible joint actions;id; at every stage for
each player. Hence, FP is computationally prohibitive as a decision making model in

large-scale games.

3.2.2 Setup: Joint Strategy Fictitious Play

In JSFP, each player tracks the empirical frequencies gjoiheactionsof all other
players. In contrast to FP, the action of plajrat timet is based on the (still in-
correct) presumption that other players are playsmgdomlybut jointly according to
theirjoint empirical frequencies, i.e., each player views all other players as a collective
group.

Let 2%(¢) be the percentage of stages at which all players chose the joint action
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profilea € A uptotimet — 1, i.e.,

t—1

() =23 Ha(r) = a}. (3.2)

t

7=0
Let z(¢) denote the empirical frequency vector formed by the comporefifs) } ;4.
Note that the dimension af(¢) is the cardinality|.A|.

a—;
—1

Similarly, letz""(t) be the percentage of stages at which players other then player

‘P; have chosen the joint action profile; € A_; up to timet — 1, i.e.,

t—1

L) =23 Ha(r) =as), (3.3)

ai €A
Let z_;(¢) denote the empirical frequency vector formed by the components
{2%,"(t)}a_.ea_, Note that the dimension af ,(t) is the cardinality x;..;.4;].
Similarly to FP, playefP;’s action at timet is based on an expected utility for the
actiona; € A;, but now based on the joint action model of opponents givén by
Ui(@s, 2-i(t)) = Y Ui(@s, a)2"7(t). (3.4)
a_i€A_;
In the JSFP process, playBy uses this expected utility by selecting an action at time

t from the set

BRi(Z_i(t)) = {ELZ S AZ : Uz(dl, Z_i(t)) = Imax Ui(ai, Z_Z(t))}

a;€A;
Note that the utility as expressed in (3.4) is linearin(t).

When written in this form, JSFP appears to have a computational burden for each

player that is even higher than that of FP, since tracking the empirical frequencies

!Note that we use the same notation for the related quartities a_;), U(a;, g_;), andU (a;, z_;),
where the latter two are derived from the first as defined in equations (3.1) and (3.4), respectively.
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z_;(t) € A(A_;) of the joint actions of the other players is more demanding for player
P; than tracking the empirical frequencies;(t) € x;.A(A;) of the actions of the
other players individually, wheré\(.4) denotes the set of probability distributions
on a finite set4. However, it is possible to rewrite JSFP to significantly reduce the

computational burden on each player.
To choose an action at any timeg playerP; using JSFP needs only the predicted
utilities U;(a;, z_;(t)) for eacha; € A;. Substituting (3.3) into (3.4) results in

1 &
¢

—_

Ui(ai, z—(t)) = Ui(ai, a—i(7)),

Il
=)

which is the average utility playé?; would have received if actiom had been chosen
at every stage up to time— 1 and other players used the same actions. This average
utility, denoted by (¢), admits the following simple recursion,

2, t s
Vst +1) = —=V"(t) +

1V Ui(ai, a—i(t)).

t+1

The important implication is that JSFP dynamics can be implememitbdut requir-

ing each player to track the empirical frequencies of the joint actions of the other
players andvithoutrequiring each player to compute an expectation over the space of
the joint actions of all other players. Rather, each player using JSFP merely updates
the predicted utilities for each available action using the recursion above, and chooses

an action each stage with maximal predicted utility.
An interesting feature of JSFP is that each strict Nash equilibrium has an “absorp-

tion” property as summarized in Proposition 3.2.1.

Proposition 3.2.1.In any finiten-person game, if at any time> 0, the joint action
a(t) generated by a JSFP process is a strict Nash equilibrium, théer- 7) = a(t)

for all = > 0.
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Proof. For each playeP; € P and for all actions:; € A;,
Ui(a;(t), z—i(t)) > Ui(ag, z—i(t)).

Sincea(t) is a strict Nash equilibrium, we know that for all actionse A;\a;(t)
Ui(ai(t),a_;(t)) > Us(a;, a_;(t)).

By writing z_;(t + 1) in terms ofz_;(¢) anda_;(t),

Ui(ai(t), z2—(t + 1)) Ui(ai(t), z—(t)) + Ui(ai(t), a—i(t)).

T i+l 1

Thereforeg;(t) is the only best response ta;(t + 1),
Ui(ai(t), Z_Z‘(t + 1)) > Ui(ai, Z_Z'(t + 1))7 Vai € Az\a,(t)

]

A strict Nash equilibrium needot possess this absorption property in general for

standard FP when there are more than two pla§ers.

The convergence properties, even for potential games, of JSFP in the case of more
than two players is unresolvédWe will establish convergence of JSFP in the case
where players use some sort of inertia, i.e., players are reluctant to switch to a better

action.

TheJSFP with inertia process is defined as follows. Players choose their actions

according to the following rules:

2To see this, consider the following 3 player identical interest game. Fdp;att P, let A;
{a,b}. Let the utility be defined as followdJ (a,b,a) = U(b,a,a) = 1,U(a,a,a) = U(b,b,a)
0,U(a,a,b) = U(b,b,b) = 1,U(a,b,b) = —1,U(b,a,b) = —100. Suppose the first action played
isa(l) = {a,a,a}. Inthe FP process each player will seek to deviate in the ensuing stgye~
{b,b,b}. The joint action{b, b, b} is a strict Nash equilibrium. One can easily verify that the ensuing
action in a FP process will bg3) = {a, b, a}. Therefore, a strict Nash equilibrium is not absorbing in
the FP process with more than 2 players.

3For two player games, JSFP and standard FP are equivalent, hence the convergence results for FP
hold for JSFP.
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JSFP-1: If the actiona,(t — 1) chosen by playeP; at timet — 1 belongs to
BRIL(Z,IL(t)), thenai(t) = (]Jl(t — 1)

JSFP-2: Otherwise, playe®; chooses an actiom,(t), at timet¢ according to

the probability distribution
ai(1)Bi(t) + (1 — () v D),

whereq;(t) is a parameter representing play&is willingness to optimize at
timet, 5;(t) € A(A;) is any probability distribution whose support is contained
in the setBR;(z_,(t)), andv® (1 is the probability distribution with full sup-

port on the action;(t — 1), i.e.,

ai(t—l) — 1

0

where the 1” occurs in the coordinate ak(.A;) associated with;(t — 1).

According to these rules, play@?; will stay with the previous actiom,;(t — 1)
with probability 1 — «;(¢) even when there is a perceived opportunity for utility im-
provement. We make the following standing assumption on the players’ willingness to

optimize.

Assumption 3.2.1.There exist constantsand such that for all time > 0 and for
all playersP; € P,

O<e<aqt)y<e<l.
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This assumption implies that players are always willing to optimize with some

nonzero inertia

The following result shows a similar absorption property of pure Nash equilibria

in a JSFP with inertia process.

Proposition 3.2.2.1n any finiten-person game, if at any time> 0 the joint action
a(t) generated by a JSFP with inertia process is 1) a pure Nash equilibrium and 2) the

actiona;(t) € BR;(z—;(t)) for all playersP; € P, thena(t + 7) = a(t) for all 7 > 0.

Proof. For each playeP; € P and for all actions:; € A;,
Ui(ai(t), z_;i(t)) > Ui(a;, z—i(t)).
Sincea(t) is a pure Nash equilibrium, we know that for all actionse A;
Ui(ai(t), a—i(t)) = Ui(as, a—i(t)).
By writing z_;(t + 1) in terms ofz_;(¢) anda_;(t),
Ui(a;(t),z_i(t+ 1))

Ui(ai(t), z2—(t)) + Ui(ai(t), a—i(t)).

T i+l 1

Thereforeg;(t) is also a best response4o;(t + 1),
UZ((]JZ(t), Z,i(t + 1)) Z Ui(ai, Z,Z'<t + 1)), Vai S Az

Sinceq;(t) € BR;(z—;(t + 1)) for all players, them(t + 1) = a(t). O

3.2.3 Convergence to Nash Equilibrium

The following establishes the main result regarding the convergence of JSFP with in-

ertia.

We will assume that no player is indifferent between distinct strategies

4This assumption can be relaxed to holding for sufficiently larges opposed to atl
50ne could alternatively assume that all pure equilibria are strict.
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Assumption 3.2.2.Player utilities satisfy

Ui(azlaa—i) 7& Ui(azzaa—i)a Va},a? < Ai; az1 7& CL?, \V/CL_Z‘ € A—ia Vie {]-7 7n}
(3.5)

Theorem 3.2.1.In any finite generalized ordinal potential game in which no player
is indifferent between distinct strategies as in Assumption 3.2.2, the action profiles
a(t) generated by JSFP with inertia under Assumption 3.2.1 converge to a pure Nash

equilibrium almost surely.

We provide a complete proof of Theorem 3.2.1 in the Appendix of this chapter. We
encourage the reader to first review the proof of fading memory JSFP with inertia in

Theorem 3.3.1 of the following section.

3.3 Fading Memory JSFP with Inertia

We now analyze the case where players view recent information as more important.
In fading memory JSFP with inertia, players replace true empirical frequencies with

weighted empirical frequencies defined by the recursion

250) = H{a_i(0) =a},
2N = (1= p)E it — 1)+ pl{a_i(t —1) = a_;}, Vt > 1,

where0 < p < 1is a parameter withl —p) being the discount factor. Lét ;(¢) denote
the weighted empirical frequency vector formed by the componefits(t)}a_.ca_,.
Note that the dimension af ;(¢) is the cardinality.4_,|.

One can identify the limiting cases of the discount factor. Whea 1 we have
“Cournot” beliefs, where only the most recent information matters. In the case when
p is not a constant, but ratheft) = 1/(t 4+ 1), all past information is given equal

importance as analyzed in Section 3.2.
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Utility prediction and action selection with fading memory are done in the same
way as in Section 3.2, and in particular, in accordance with rules JSFP-1 and JSFP-2.
To make a decision, playét; needs only the weighted average utility that would have

been received for each action, which is defined for action A; as

V() o= Us(ag, 2i(t) = Y Ui(@s, a_)2°7(t).

a_;€EA_;

One can easily verify that the weighted average utﬂ@&/(t) for actiona; € A; admits

the recursion
Vii(t) = pUilas, a—s(t — 1)) + (L = p) Vi (t — 1).

Once again, playep; is not required to track the weighted empirical frequency vector

Z_,;(t) or required to compute expectations owvér;.

As before, pure Nash equilibria have an absorption property under fading memory

JSFP with inertia.

Proposition 3.3.1.In any finiten-person game, if at any time> 0 the joint action

a(t) generated by a fading memory JSFP with inertia process is 1) a pure Nash equilib-

rium and 2) the actiom;(t) € BR;(Z_;(t)) for all playersP; € P, thena(t+t) = a(t)

forall £ > 0.

Proof. For each playeP; € P and for all actions:; € A;,
Ui(ai(t), 2-i(t)) = Ui(as, 2-i(t)).

Sincea(t) is a pure Nash equilibrium, we know that for all actianss A;
Ui(a;(t),a_i(t)) > Ui(a;,a_i(t)).

By writing Z_;(¢ + 1) in terms ofZ_;(¢) anda_;(t),

Ui(ai(t), 2-(t + 1)) = (1 = p)Us(ai(t), 2i(1)) + pUs(ai(t), a—(t)).
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Thereforeg;(t) is also a best responseio;(t + 1),

Sinceq;(t) € BR;(Z_;(t + 1)) for all players, ther(t + 1) = a(¢). O

The following theorem establishes convergence to Nash equilibrium for fading

memory JSFP with inertia.

Theorem 3.3.1.In any finite generalized ordinal potential game in which no player is
indifferent between distinct strategies as in Assumption 3.2.2, the action prgfijes
generated by a fading memory JSFP with inertia process satisfying Assumption 3.2.1

converge to a pure Nash equilibrium almost surely.

Proof. The proof follows a similar structure to the proof of Theorem 6.2 in [YouO5].
Attime t, leta® := a(t). There exists a positive constdft independent of, such
that if the current action® is repeated” consecutive stages, i.e(t) = ... = a(t +
T —1) = a° thenBR,(2_;(t + T)) = BR;(a’,) © for all players. The probability
of such an event is at leaét — )""~1, wheren is the number of players. If the
joint actiona® is an equilibrium, then by Proposition 3.3.1 we are done. Otherwise,
there must be at least one play@y,) € P such thaw),) ¢ BRiu)(a’,,,) and hence
a?(l) & BR;1)(Z_iy(t +T)).

Consider now the event that, at time- 7', exactly one player switches to a dif-
ferent action, i.e.a' := a(t + T) = (aj,),a’,,,) for some playefP;;) € P where
Uiay(a*) > U;ny(a®). This event happens with probability at least — z)"~'. Note

thatif (-) is a generalized ordinal potential function for the game, thiefl) < ¢(a').

Continuing along the same lines, if the current actibis repeated’ consecutive

stages, i.ea(t+7T) = .. =a(t+ 2T — 1) = a', thenBR;(z_;(t + 2T)) = BR;(a',)

6Since no player is indifferent between distinct strategies, the best response to the current action
profile, BR;(a" ), is a singleton.
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for all players. The probability of such an event is at lgdst- £)"("—1. If the joint
actiona! is an equilibrium, then by Proposition 3.3.1, we are done. Otherwise, there
must be at least one play@,) € P such thata;, ¢ BRig)(al,,) and hence
Ay & BRi(2)(Z-i(2)(t + 2T)).

One can repeat the arguments above to construct a sequence of profiles

a’ al,a?, ..., a™, whered" = (@} a]:(lk)) for all k > 1, with the property that
¢(a") < p(a’) < ... < g(a™),
anda™ is an equilibrium. This means that givéa ;(¢)}" ,, there exist constants

T = (JAl+1)T >0,

(§(1 N g)n—1)|v4|<(1 o g)n(T—l))|A|+1 >0,

(LN
I

both of which are independent afsuch that the following event happens with prob-
ability at leastz: a(t + T) is an equilibrium andy;(t + T') € BR;(:_;(t + T)) for
all playersP; € P. This implies thata(¢) converges to a pure equilibrium almost

surely. O

3.4 Congestion Games and Distributed Traffic Routing

In this section, we illustrate the main results on congestion games, as defined in Sec-
tion 2.3.3, which are a special case of the generalized ordinal potential games ad-
dressed in Theorems 3.2.1 and 3.3.1. We illustrate these results on a simulation of
distributed traffic routing. We go on to discuss how to modify player utilities in dis-
tributed traffic routing to allow a centralized planner to achieve a desired collective

objective through distributed learning.
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3.4.1 Distributed Traffic Routing

We consider a congestion game, as defined in Section 2.3.3, with 100 players, or
drivers, seeking to traverse from node A to node B albfglifferent parallel roads

as illustrated in Figure 3.1. Each driver can select any road as a possible route. In

Figure 3.1: Fading Memory JSFP with Inertia: Congestion Game Example — Network Topol-
ogy

terms of congestion games, the set of resources is the set of 70aaisd each player

can select one road, i.e4; = R.

Each road has a quadratic cost function with positive (randomly chosen) coeffi-
cients,

cr (k) = a;k® + bik +¢;, i =1,..., 10,

wherefk represent the number of vehicles on that particular road. The actual coeffi-
cients are unimportant as we are just using this example as an opportunity to illustrate
the convergence properties of the algorithm fading memory JSFP with inertia. This
cost function may represent the delay incurred by a driver as a function of the number

of other drivers sharing the same road.

We simulated a case where drivers choose their initial routes randomly, and every
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day thereafter, adjusted their routes using fading memory JSFP with inertia. The pa-
rametersy;(t) are chosen a8.5 for all days and all players, and the fading memory
parametep is chosen aB.03. The number of vehicles on each road fluctuates initially

and then stabilizes as illustrated in Figure 3.2. Figure 3.3 illustrates the evolution of the
congestion cost on each road. One can observe that the congestion cost on each road
converges approximately to the same value, which is consistent with a Nash equilib-
rium with large number of drivers. This behavior resembles an approximate “Wardrop
equilibrium” [War52], which represents a steady-state situation in which the conges-
tion cost on each road is equal due to the fact that, as the number of drivers increases,

the effect of an individual driver on the traffic conditions becomes negligible.

20

[
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Figure 3.2: Fading Memory JSFP with Inertia: Evolution of Number of Vehicles on Each
Route

Note that FP could not be implemented even on this very simple congestion game.
A driver using FP would need to track the empirical frequencies of the choices of the

99 other drivers and compute an expected utility evaluated over a probability space of
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Figure 3.3: Fading Memory JSFP with Inertia: Evolution of Congestion Cost on Each Route

dimension10%.

It turns out that JSFP, fading memory JSFP, or other virtual payoff based learning
algorithms are strongly connected to actual driver behavioral models. Consider the
driver adjustment process considered in [BPK91] which is illustrated in Figure 3.4.

The adjustment process highlighted is precisely JSFP with Inertia.

3.4.2 Incorporating Tolls to Minimize the Total Congestion

It is well known that a Nash equilibrium may not minimize the total congestion ex-
perienced by all drivers [Rou03]. In this section, we show how a global planner can
minimize the total congestion by implementing tolls on the network. The results are
applicable to general congestion games, but we present the approach in the language

of distributed traffic routing.
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Figure 3.4: Example of a Driver Adjustment Process

The total congestion experienced by all drivers on the network is
T.(a) =Y os(a)e(os(a)).
reR
Define a new congestion game where each driver’s utility takes the form
Ui(a) = — Z (Cr(UT(CL)) + tr(ar<a)))7
rea;

wheret, (-) is the toll imposed on roadwhich is a function of the number of users of

roadr.

The following proposition, which is a special case of Proposition 5.3.1, outlines
how to incorporate tolls so that the minimum congestion solution is a Nash equilib-
rium. The approach is similar to the taxation approaches for nonatomic congestion

games proposed in [Mil04, San02].
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Proposition 3.4.1. Consider a congestion game of any network topology. If the im-

posed tolls are set as
tr(k) = (k= Ve (k) — e (k—1)], Yk >1,

then the total negative congestion experienced by all drivers,) := —T7.(a), is a

potential function for the congestion game with tolls.

By implementing the tolling scheme set forth in Proposition 3.4.1, we guarantee
that all action profiles that minimize the total congestion experienced on the network
are equilibria of the congestion game with tolls. However, there may be addition equi-
libria at which an inefficient operating condition can still occur. The following propo-
sition establishes the uniqueness of a strict Nash equilibrium for congestion games of

parallel network topologies such as the one considered in this example.

Proposition 3.4.2. Consider a congestion game with nhondecreasing congestion func-
tions where each driver is allowed to select any one road,Ae= R for all drivers.

If the congestion game has at least one strict equilibrium, then all equilibria have the
same aggregate vehicle distribution over the network. Furthermore, all equilibria are

strict.

Proof. Suppose action profiles' and a? are equilibria witha! being a strict equi-

librium. We will use the shorthand notatiarf' to represent,(a'). Leto(a') :=

2

(0%, ...,0%) ando(a?) := (¢, ...,0% ) be the aggregate vehicle distribution over the

riy o Yy,

network for equilibriuma! anda?. If o(a') # o(a?), there exists a road such that

o > 0% and aroad such thav < o¢". Therefore, we know that

1

calog ) = Ca(o'g2 +1),

2

a(0f) > elof +1).
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Sincea! anda? are equilibrium witha! being strict,

1

calog ) < Cn:(a';}il +1), Vr;y €R,

(o) < cm(aﬁj +1), Vr, €eR.
Using the above inequalities, we can show that
1 2 2 1 1
cal0g ) = calog +1) Z as(0y ) = as(of +1) > calog),

which gives us a contradiction. Therefaré&') = o(a?). Sincea' is a strict equilib-

rium, thena? must be a strict equilibrium as well. ]

When the tolling scheme set forth in Proposition 3.4.1 is applied to the congestion
game example considered previously, the resulting congestion game with tolls is a po-
tential game in which no player is indifferent between distinct strategies. Proposition
3.4.1 guarantees us that the action profiles that minimize the total congestion experi-
enced by all drivers on the network are in fact strict equilibria of the congestion game
with tolls. Furthermore, if the new congestion functions are nondecreasiven by
Proposition 3.4.2, all strict equilibria must have the same aggregate vehicle distribu-
tion over the network, and therefore must minimize the total congestion experienced
by all drivers on the network. Therefore, the action profiles generated by fading mem-
ory JSFP with inertia converge to an equilibrium that minimizes the total congestion

experienced by all users, as shown in Figure 3.5.

3.5 Concluding Remarks and Future Work

We have analyzed the long-term behavior of a large number of players in large-scale
games where players are limited in both their observational and computational capa-

bilities. In particular, we analyzed a version of JSFP and showed that it accommodates

"Simple conditions on the original congestion functions can be established to guarantee that the new
congestion functions, i.e congestion plus tolls, are nondecreasing.
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Figure 3.5: Fading Memory JSFP with Inertia: Evolution of Total Congestion Experienced by
All Drivers with and without Tolls.

inherent player limitations in information gathering and processing. Furthermore, we
showed that JSFP has guaranteed convergence to a pure Nash equilibrium in all gen-
eralized ordinal potential games, which includes but is not limited to all congestion
games, when players use some inertia either with or without exponential discounting
of the historical data. The methods were illustrated on a transportation congestion
game, in which a large number of vehicles make daily routing decisions to optimize
their own objectives in response to the aggregate congestion on each road of interest.
An interesting continuation of this research would be the case where players observe

only the actual utilities they receive. This situation will be the focus of Chapter 5.

The method of proof of Theorems 3.2.1 and 3.3.1 relies on inertia to derive a pos-
itive probability of a single player seeking to make an utility improvement, thereby
increasing the potential function. This suggests a convergence rate that is exponential

in the game size, i.e., number of players and actions. It should be noted that inertia
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is simply a proof device that assures convergence for generic potential games. The
proof provides just one out of multiple paths to convergence. The simulations reflect
that convergence can be much faster. Indeed, simulations suggest that convergence
is possible even in the absence of inertia but not necessarily for all potential games.
Furthermore, recent work [HMO6] suggests that convergence rates of a broad class
of distributed learning processes can be exponential in the game size as well, and so
this seems to be a limitation in the framework of distributed learning rather than any
specific learning process (as opposed to centralized algorithms for computing an equi-

librium).

3.6 Appendix to Chapter 3

3.6.1 Proof of Theorem 3.2.1

This section is devoted to the proof of Theorem 3.2.1. It will be helpful to note the

following simple observations:
1. The expression fdvr;(a;, z_;(t)) in equation (3.4) is linear in_;(¢).
2. If an action profilea® € A, is repeated over the intervial ¢t + N — 1], i.e.,
alt)=a(t+1)=..=at+N—1)=ad,

thenz(t + V) can be written as

t N 0

- t a
t+NZ()+ v,

2(t+N) = TN

and likewisez_;(t + ) can be written as

N =y
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We begin by defining the quantitiég¢), M., m,, and~ as follows. Assume that
playerP; played a best response at least one time in the périod wheret € [0, o).
Define

0;i(t) :=min{0 <7 <t:a;(t—7) € BRi(z(t — 7))}
In other words¢ — 6;(t) is the last time in the periofd, ¢] at which playerP; played

a best response. If play@; never played a best response in the pefiod, then we

adopt the conventioty(¢) = co. Note that
a;(t —7) = a;(t), V7 €{0,1,...,min{d;(¢), t}}.
Now define

M, = max{|Ui(a") - Ui(a®)| : a*,a* € A, P; € P},
m, = mln{|UZ(a1) o Uz(a2)| . |Uz(a1) — Uz((lQ)‘ > O;GI,CLQ - A; Pz € P}a

7= [My/my],

where[-] denotes integer ceiling.

The proof of fading memory JSFP with inertia relied on a notion of memory dom-
inance. This means that if the current action profile is repeated a sufficient number of
times (finite and independent of time) then a best response to the weighted empirical
frequencies is equivalent to a best response to the current action profile and hence will
increase the potential provided that there is only a unique deviator. This will always
happen with at least a fixed (time independent) probability because of the players’

inertia.

In the non-discounted case the memory dominance approach will not work for the
reason that the probability of dominating the memory because of the players’ inertia
diminishes with time. However, the following claims show that one does not need to

dominate the entire memory, but rather just the portion of time for which the player
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was playing a suboptimal action. By dominating this portion of the memory, one can
guarantee that a unilateral best response to the empirical frequencies will increase the

potential. This is the fundamental idea in the proof of Theorem 3.2.1.
Claim 3.6.1. Consider a playef; with §,(¢) < co. Lett; be any finite integer satisfy-
ing

If an action profilea® € A, is repeated over the intervél, t + t4], i.e.,
alt) =a(t+1)=---=a(t+t;) = ad°,

then
a; € BRz(Z;Z(t + 1t + 1)) = Ul(dz,agl) > Ui(a?,ao ),

i.e., playerP;’s best response at tinte- ¢, + 1 cannot be a worse responsedd, than

0
a; .

Proof. Since&i € BRZ(Z,Z(t + 1t + 1)),

Expressingz_;(t + t; + 1) as a summation over the intervals¢ — d;(¢t) — 1], [t —
3;(t),t — 1], and[t, t + t;] and using the definition (3.4) leads to

(tr + 1) [Ui(as, a2;) — Ui(af, a?,)]
+ Z [Ui(ai,a—i(7)) — Us(af, a—i(7))]
T=t—0§;(t)

Now, since

ai(t — 6,(1) = ai(t — 6;,(t) +1) = - = ai(t) = a° € BRi(=_i(t — 6,(1))),
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meaning that the third term above is negative, and so

(tl + 1)[ (aw ) '(a?>a0 )}

t—1

+ Ui(ai, a_i(1)) — Us(al, a_ Z(7‘))} > 0.

This implies that

or, alternatively,

[Ui(a?’ agi) — Us(as,a” 0 )} < My

If the quantity in brackets were positive, this would violate the definitiomQf—

unlessi; = a. In either case,

Ui(di,agi) — U-(a0 aoz) > 0.

79
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There are certain action profile/empirical frequency values where the next play is

“forced”. Define the time-dependent (forced-move)&ét) C A x A(A) as
(@, z) € F(t)

=

t 1 .
a; ; Z i a-i ' 1,... .
azEBRZ<t+1zz+t+1v >, Vie{l,..,n}
So the conditiorfa(t), z(t)) € F(t), implies that for all, “today’s” action necessarily

lies in “tomorrow’s” best response, i.e.,

By the rule JSFP-1, the next play(t + 1) = a;(¢) is forcedfor all i € {1,..., N}.
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Now define
w(t;a(t),z(t) :=min{r >0: (a(t+7),2(t +7)) € F(t+71)}. (3.6)

If this is never satisfied, then sett; a(t), z(t)) = oc.
For the sake of notational simplicity, we will drop the explicit dependence(on
andz(t) and simply writer(¢) instead ofr(¢; a(t), z(t)).

A consequence of the definition af) is that for a giveru(t) and z(¢), 1) a(t)
mustbe repeated over the intenjalt + 7 (¢)]. Furthermore, at time+ = (¢) + 1, at
least oneplayer can improve (over yet another repeated playf) by playing a best
response at time+ 7 (t) + 1. Furthermore, the probability thekactly oneplayer will

switch to a best response action at time 7(¢) + 1 is at least(1 — )" .

The following claim shows that this improvement opportunity remains evefs )f

is repeated folongerthan~(¢) (because of inertia).

Claim 3.6.2. Leta(t) and z(t) be such thatr(¢) < co. Lett; be any integer satisfying

W(t)§t1<00. If
at)=a(t+1)=---=alt+n(t) =---=a(t+t1),

then
a;(t) € BR;(z—;(t +t; + 1)), forsomei € {1,....,n}.

Proof. Let: € {1,...,n} be such that
a;(t) € BRi(z—i(t + 7(t) + 1))

and
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The existence of such aris assured by the definition af(t). Picka; € BR;(z_;(t +
7(t)+1)). We have

Ui(ai, z—(t + m(t) + 1)) = Ui(as(t), z—i(t + 7(t) + 1))

— [Us(ag, it + 7(1))) = Us(as(8), 2_s(t + ()] —— m(t)

[+ 1
+ [Ui(ai, a—i(t)) — Us(ai(t), a—i(t))] eI > 0.
Sinceq;(t) € BR;(z_;(t + 7(t))), we must have
Ui(és, a_i(t)) — Us(ai(t), a_i(t)) > 0.
This implies
Ui, z—i(t + t1 + 1)) — Uia;(t), z—i(t + ¢ + 1))

t4m(t) +1

= [Ui(as, z—i(t + 7(t) + 1)) — Us(a;(t), z—i(t + 7(t) + 1))] 41

tl — ’/T(t)

— > 0.
t+t+1

+[Ui(ai, a—i(t)) — Us(ai(t), a—i())]

Claim 3.6.3. If, at any timea(t) is not an equilibrium, them (t) < ~¢.

Proof. Leta® := a(t). Sincea® is not an equilibrium,
a) ¢ BR;(a",), for somei € {1,...,n}.
Picka; € BR;(a”;) so thatU;(a;, a’ ;) — Ui(a?, a’;) > m,. If
alt) =a(t+1)=---=a(t+~t) =a,
then

tUi(as, 2—i(t)) — Uila, 2—(t))] + (vt + 1)[Ui(as, a°;) — Ui(ag, a®;)]
t+t+1

o ~tM (vt + L)m,
trat+1

> 0.
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Claim 3.6.4. Consider a finite generalized ordinal potential game with a potential
function ¢(-) with player utilities satisfying Assumption 3.2.2. For any titng 0,

suppose that
1. a(t) is not an equilibrium; and
2. maxi<i<n 51(t) < 5 for Som65 <.

Define
Y(t) =14 max {m(t),7d}.

Theny(t) < 1+ ~tand
Pr[g(a(t + (1)) > dla(t)) | a(t), 2(t)] = g(1 —2)"F),

and

max 0;(t + (1)) <1+ (1 +7)9.

1<i<n

Proof. Sincea(t) is not an equilibrium, Claim 3.6.3 implies thatt) < ~¢, which in
turn implies the above upper bound o(¥).
First consider the case whex¢t) > +6, i.e.,y)(t) = 1 + =(t). According to the

definition of 7(¢) in equation (3.6)a(t) mustbe repeated as a best response in the

period[t, ¢ + w(t)]. Furthermore, we must have

max §;(t + (t)) <1

1<i<n
anda;(t) € BR;(z_;(t +(t))) for at least one playeP;. The probability that exactly
one such playeP; will switch to a choice different than;(¢) at timet + «(¢) is at
leasts(1 — )" !. But, by Claim 3.6.1 and no-indifference Assumption 3.2.2, such an

event would cause

U(a(t+7(t) + 1)) > Ui(a(t)) = o(a(t+7(t) + 1)) > p(a(t)).
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Now consider the case whetét) < 74, i.e.,1)(t) = 1 + 4. In this case,

max ;(t + () < 1+ 76 + 9.

1<i<n

Moreover, the event

a(t) = - =a(t+~0)

will occur with probability at least(1 — )%, Conditioned on this event, Claim 3.6.2
provides that exactly one play®; will switch to a choice different thaa;(¢) at time
t + ¢ (t) with probability at least(1 — z)"~*. By Claim 3.6.1 and no-indifference

Assumption 3.5, this would cause

Ui(a(t + (1)) > Ui(a(t)) = o(a(t + (1)) > ¢(a(t)).

Proof of Theorem 3.2.1

It suffices to show that there exists a non-zero probabitity; 0, such that the follow-
ing statement holds. For any> 0, a(t) € A, andz(t) € A(A), there exists a finite

timet* > ¢ such that, for some equilibriuat,

Prla(r) = a" V7T > t" | a(t),{z=i(t) }i,] > €. (3.7)

In other words, the probability of convergence to an equilibrium by tifrie at least
e*. Sinces* does noddepend on, a(t), or z(t), this will imply that the action profile

converges to an equilibrium almost surely.

We will construct a series of events that can occur with positive probability to

establish the bound in equation (3.7).

8In fact, a tighter bound can be derived by exploiting the forced moves for a duratie()of
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Lett, =t + 1. All players will play a best response at timewith probability at

leaste™. Therefore, we have

Pr | max 6;(to) = 0 | a(t), {z—i(t)}ie | = €™ (3.8)

Assume that(ty) is not an equilibrium. Otherwise, according to Proposition 3.2.2,
a(t) = a(ty) for all 7 > t,.

From Claim 3.6.4, defing andd; as

6y = 14 (14 7)dy,
ty = to+ 1+ max{n(to),vd},

< to+1+7to =14 (1 +7)to,

whered, := 0. By Claim 3.6.4,

Z)n(1+780)-1

Pr{p(a(tr)) > ¢(alto)) | alto), {z—i(to) ia] = £(1 =

and
max 51(751) S (51.
1<i<n

Similarly, for £ > 0 we can recursively define

(Sk = 1+ (1 + 7)5]6,1,
k—1

= (1+7)f0+ ) _(1+7),

J=0

ol
—

= (1+7),

.
Il
=)

and
tr = tr1+ 1+ maX{W<tk—1)7 7514:—1}7

< 14+ (I +9)te
k-1

< (@Y ([1+),
=0
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where

Pr[¢(a(ty)) > d(alte-1) | alte-r), {z=i(te-1) }y] = (1 — )"0

and

(1) <
max 0i(t) < O,

as long asi(t;_1) is not an equilibrium.

Therefore, one can construct a sequence of prafileg, a(t,), ..., a(tx) with the
property thato(a(ty)) < ¢(a(ti)) < ... < é(a(ty)). Since in a finite generalized
ordinal potential gamep(a(t;)) cannot increase indefinitely &sincreases, we must
have

|Al—-1
Pr [a(t),) is an equilibrium for some;. € [t,00) | a(t), {z_i(t)}i=,] = e [ (1 — &)+t
k=0

wheres" comes from (3.8). Finally, from Claim 3.6.1 and Assumption 3.2.2, the

above inequality together with
Prla(ty) = -~ = alty +70) | alte), {z—i(ti) o] = (1 —8)"7% = (1 —8)""
implies that for some equilibriuna,*,

Prla(r) =a", Y7 > t" | a(t),{z_i(t) }1n,] > €7,

where
4] A
=ttt 1= 1+ + ) (1+7),
§=0
[Al—-1
k=0
Sincec* does not depend arthis concludes the proof. O
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CHAPTER 4
Regret Based Dynamics for Weakly Acyclic Games

No-regret algorithms have been proposed to control a wide variety of multi-agent sys-
tems. The appeal of no-regret algorithms is that they are easily implementable in large
scale multi-agent systems because players make decisions using only retrospective or
“regret based” information. Furthermore, there are existing results proving that the col-
lective behavior will asymptotically converge to a set of points of “no-regret” in any
game. We illustrate, through a simple example, that no-regret points need not reflect
desirable operating conditions for a multi-agent system. Multi-agent systems often ex-
hibit an additional structure (i.e. being “weakly acyclic”) that has not been exploited
in the context of no-regret algorithms. In this chapter, we introduce a modification of
the traditional no-regret algorithms by (i) exponentially discounting the memory and
(i) bringing in a notion of inertia in players’ decision process. We show how these
modifications can lead to an entire class of regret based algorithms that pabwiokst

sureconvergence to a pure Nash equilibrium in any weakly acyclic game.

4.1 Introduction

The applicability of regret based algorithms for multi-agent learning has been stud-
ied in several papers [Gor05, Bow04, KV05, BP05, GJ03, AMS07]. The appeal of
regret based algorithms is two fold. First of all, regret based algorithms are easily

implementable in large scale multi-agent systems when compared with other learning
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algorithms such as fictitious play [MS96a, JGDO01]. Secondly, there is a wide range of
algorithms, called “no-regret” algorithms, that guarantee that the collective behavior
will asymptotically converge to a set of points of no-regret (also referred to as coarse
correlated equilibrium) in any game [You05]. A point of no-regret characterizes a sit-
uation for which the average utility that a player actually received is as high as the
average utility that the player “would have” received had that player used a different
fixed strategy at all previous time steps. No-regret algorithms have been proposed in
a variety of settings ranging from network routing problems [BELO6] to structured

prediction problems [Gor05].

In the more general regret based algorithms, each player makes a decision using
only information regarding the regret for each of his possible actions. If an algorithm
guarantees that a player’s maximum regret asymptotically approaches zero then the al-
gorithm is referred to as a no-regret algorithm. The most common no-regret algorithm
is regret matching [HMOO]. In regret matching, at each time step, each player plays a
strategy where the probability of playing an action is proportional to the positive part
of his regret for that action. In a multi-agent system, if all players adhere to a no-regret
learning algorithm, such as regret matching, then the group behavior will converge
asymptotically to a set of points of no-regret [HMOO]. Traditionally, a point of no-
regret has been viewed as a desirable or efficient operating condition because each
player’'s average utility is as good as the average utility that any other action would
have yielded [KV05]. However, a point of no-regret says little about the performance;
hence knowing that the collective behavior of a multi-agent system will converge to a

set of points of no-regret in general does not guarantee an efficient operation.

There have been attempts to further strengthen the convergence results of no-regret
algorithms for special classes of games. For example, in [JGDO01], Jafari et al. showed

through simulations that no-regret algorithms provide convergence to a Nash equilib-
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rium in dominance solvable, constant-sum, and generabsurmgames. In [Bow04],
Bowling introduced a gradient based regret algorithm that guarantees that players’
strategies converge to a Nash equilibrium in any 2 player 2 action repeated game.
In [BELOG6], Blum et al. analyzed the convergence of no-regret algorithms in routing
games and proved that behavior will approach a Nash equilibrium in various settings.
However, the classes of games considered here cannot fully model a wide variety of

multi-agent systems.

It turns out that weakly acyclic games, which generalize potential games [MS96D],
are closely related to multi-agent systems [MASO07a]. The connection can be seen by
recognizing that in any multi-agent system there is a global objective. Each player
is assigned a local utility function that is appropriately aligned with the global objec-
tive. It is precisely this alignment that connects the realms of multi-agent systems and

weakly acyclic games.

An open question is whether no-regret algorithms converge to a Nash equilibrium
in n-player weakly acyclic games. In this chapter, we introduce a modification of the
traditional no-regret algorithms that (i) exponentially discounts the memory and (ii)
brings in a notion of inertia in players’ decision process. We show how these modifi-
cations can lead to agntire classof regret based algorithms that provide almost sure
convergence to pure Nash equilibrium in any weakly acyclic game. It is important
to note that convergence to a Nash equilibrium also implies convergence to a no-regret

point.

In Section 4.2 we discuss the no-regret algorithm, “regret matching,” and illustrate
the performance issues involved with no-regret points in a simple 3 player identical
interest game. In Section 4.3 we introduce a new class of learning dynamics referred
to as regret based dynamics with fading memory and inertia. In Section 4.4 we present

some simulation results. Section 4.5 presents some concluding remarks.
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4.2 Regret Matching

We consider a repeated matrix game witiplayer setP := {P,...,P,}, a finite
action setA; for each playerP; € P, and a utility functionlU; : A — R for each

playerP; € P, whereAd := A; x --- x A,.

We introduce regret matching, from [HMOO], in which players choose their actions

based on theiregretfor not choosing particular actions in the past steps.

Define the average regret of play@rfor an actions; € A; at timet as
t—1

o 1
R (1) == n > (Uilai, azi(7)) = Ui(a(7))). (4.1)
7=0
In other words, playe;'s average regret foti; € .4; would represent the average
improvement in his utility if he had chosen € A; in all past steps and all other

players’ actions had remained unaltered.

Each playerP; using regret matching computég”(t) for every actiona; € A,
using the recursion

RE() = R 1)+ (U, ai(8) — Uial).

Note that, at every step > 0, playerP; updates all entries in his average regret
vector R;(t) := [R{(t)],_,- To update his average regret vector at timet is
sufficient for playerP; to observe (in addition to the actual utility received at time
t — 1, U;(a(t — 1))) his hypothetical utilitied/;(a;, a_;(t — 1)), for all a; € A;, that
would have been received if he had chosgfinstead of:;(¢ — 1)) and all other player

actionsa_;(t — 1) had remained unchanged at step 1.

In regret matching, once play&; computes his average regret vectBf(t), he
chooses an actiom;(t), t > 0, according to the probability distributign(¢) defined

as
(R (6)]"

Yi(t) =Prla(t) = a;] = -
v )=l Daea, 1 (1)]

58



foranya,; € A;, provided that the denominator above is positive; otherwige) is the
uniform distribution overA; (p;(0) € A(A;) is always arbitrary). Roughly speaking,

a player using regret matching chooses a particular action at any step with probability
proportional to the average regret for not choosing that particular action in the past
steps. If all players use regret matching, the empirical distribution of the joint actions
converge almost surely to the set of coarse correlated equilibria (similar results hold
for different regret based adaptive dynamics); see [HM00, HMO01, HMO03a]. Note that
this does not mean that the action profil¢s) will converge, nor does it mean that the

empirical frequencies of(¢) will converge to a point im\(.A).

4.2.1 Coarse Correlated Equilibria and No-Regret

The set of coarse correlated equilibrium has a strong connection to the notion of regret.

We will restate the definitions of the joint and marginal empirical frequencies orig-
inally defined in Section 3.2. Define the empirical frequency of the joint actidiis),
as the percentage of stages at which all players chose the joint action prefieup

totimet — 1, i.e., B
24(t) == 1ZI{CL(T) =a}.

t
7=0

Let z(¢) denote the empirical frequency vector formed by the components
{z%(t) }sea- Note that the dimension af(t) is the cardinality of the se#, i.e., |A|,
andz(t) € A(A).

a—;
—i

Similarly, letz""(t) be the percentage of stages at which players other then player

‘P; have chosen the joint action profite; € A_; up to timet — 1, i.e.,

t—1
as 1

() = > Hai(r) =a}, (4.2)

7=0
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which, givenz(t), can also be expressed as
S OESEAI O}
a; €EA;
Let>_;(¢) denote the empirical frequency vector formed by the compordefits(t)}o_.ca_,-

Note that the dimension af ;(¢) is the cardinality.A_;| andz_;(t) € A(A_;).

Given a joint distributior:(t), the expected utility of playeP; is

U) = 3 Uila)= (1),
acA

[y

S

Ui(a(T)),

[e=]

T=

which is precisely the average utility that play2rhas received up to time— 1. The
expected utility of playe; for any actioru; € A; is

Ui(ai, 2i(t)) = > Uilai,a_3)2% (1),

a_;€EA_;
1 t—1
= ; Z Ui(ai> afi(T)),
7=0

which is precisely the average utility that play@r would have received up to time
t — 1if playerP; had played action; all previous time periods provided that the other
players actions remained unchanged. Therefore, the regret of ghayler action

a; € A; attimet can be expressed as
R (t) = Ui(ai, 2-i(t)) — Us(2(t)).

If all players use regret matching, then we know that the empirical frequgnty
of the joint actions converges almost surely to the set of coarse correlated equilibria. If
z(t) is a coarse correlated equilibrium, then we know that for any pl&yer P and

any actioru; € A;,

Usas, z_i(t)) < Ui(2(t)) = R%(t) < 0.
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Therefore, stating that the empirical frequency of the joint actions converge to the set
of coarse correlated equilibria is equivalent to saying that a player’s average regret for

any action will asymptotically vanish.

4.2.2 lllustrative Example

In general, the set of Nash equilibria is a proper subset of the set of coarse correlated
equilibria. Consider for example the followir3g-player identical interest game char-

acterized by the player utilities shown in Figure 4.1.

L R L L R

ul 2 -1 ul 0 0 Ul -2 1

D| 1 -2 D[ O 0 D| -1 2
M1 M2 M3

Figure 4.1: A3—player Identical Interest Game.

PlayerP; chooses a row or D, PlayerP, chooses a columh or R, PlayerpP;
chooses a matrid/;, or My, or Ms. There are two pure Nash equilibri&, L, M;)
and(D, R, M3) both of which yield maximum utility to all players. The set of coarse
correlated equilibria contains these two pure Nash equilibria as the extremum points
of A(A) as well as many other probability distributionsA{.A). In particular, the set
of coarse correlated equilibria contains the following

{z € A(A) : Z 2% =1, UMz — ,DRM; URM; _ ZDLMQ}.
a€ Aiaz=Ms,
Any coarse correlated equilibrium of this form yields an expected utility of O to all

players. Clearly, one of the two pure Nash equilibria would be more desirable to all
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players then any other outcome including the above coarse correlated equilibria. How-
ever, the existing results at the time of writing this dissertation such as Theorem 3.1 in
[YouO5] only guarantee that regret matching will lead players to the set of coarse cor-
related equilibria and not necessarily to a pure Nash equilibrium. While this example
is simplistic in nature, one must believe that situations like this could easily arise in

more general weakly acyclic games.

We should emphasize that regret matching could indeed be convergent to a pure
Nash equilibrium in weakly acyclic games; however, to the best of authors’ knowledge,
no proof for such a statement exists. The existing results characterize the long-term
behavior of regret matching in general games as convergence to the set of coarse cor-
related equilibria, whereas we are interested in proving that the action prefilgs,
generated by regret matching will converge to a pure Nash equilibrium when player
utilities constitute a weakly acyclic game, an objective which we will pursue in the

next section.

4.3 Regret Based Dynamics with Fading Memory and Inertia

To enable convergence to a pure Nash equilibrium in weakly acyclic games, we will
modify the conventional regret based dynamics in two ways. First, we will assume
that each player has a fading memory, that is, each player exponentially discounts
the influence of its past regret in the computation of its average regret vector. More
precisely, each player computes a discounted average regret vector according to the

recursion
R (t+1) = (1= p)RY(t) + p (Us(as, ai(t)) — Uia(t))) ,

for all a; € A;, wherep € (0,1] is a parameter withh — p being the discount factor,

andR% (1) = 0.
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Second, we will assume that each player chooses an action based on its discounted
average regret using some inertia. Therefore, each pfayeinooses an actiom(t),

at stept > 1, according to the probability distribution
ai(t) RBy(R, (1)) + (1 — a(t)) v,

whereq;(t) is a parameter representing play@is willingness to optimize at time
t, v*(=1) is the vertex ofA(A;) corresponding to the actiom(t — 1) chosen by
playerP; at stept — 1, andRB; : RH:I — A(A;) is any continuous function (on

{zx € RH:l . [2]* # 0}) satisfying

2t >0s RBY(z) >0
and (4.3)

+ 0() — 1
]t =0= RB;(z) = v

wherex’ and RB{(x) are the/-th components aof and RB;(z) respectively.

We will call the above dynamics regret based dynamics (RB) with fading memory
and inertia. One particular choice for the functiBm; is

[+
S lam]

which leads to regret matching with fading memory and inertia. Another particular

RB!(z) = (when[z]™ # 0) (4.4)

choice is

— T 1{a" > 0}, (when[s]* #0),

er
x'rn>0
wherer > 0 is a parameter. Note that, for small values-pplayerP; would choose,

RB!(z) =

with high probability, the action corresponding to the maximum regret. This choice
leads to a stochastic variant of an algorithm called Joint Strategy Fictitious Play with
fading memory and inertia; see Section 3.3. Also, note that, for large values of

playerP; would choose any action having positive regret with equal probability.
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According to these rules, play@,; will stay with his previous actiom;(t — 1)
with probability 1 — «;(t) regardless of his regret. We make the following standing

assumption on the players’ willingness to optimize.

Assumption 4.3.1.There exist constantsandé such that
O<e<ait)y<e<1
for all stepst > 1 and foralli € {1,...,n}.

This assumption implies that players are always willing to optimize with some
nonzero inertid A motivation for the use of inertia is to instill a degree of hesitation
into the decision making process to ensure that players do not overreact to various

situations. We will assume that no player is indifferent between distinct strafegies

Assumption 4.3.2.Player utilities satisfy

Ui(al,a_;) # U(a?,a_;),¥ a},a € Aj,af # a2, Va_; € A, Vie{l, .. n}

177 2

The following theorem establishes the convergence of regret based dynamics with

fading memory and inertia to a pure Nash equilibrium.

Theorem 4.3.1.In any weakly acyclic game satisfying Assumption 4.3.2, the action
profilesa(t) generated by regret based dynamics with fading memory and inertia sat-

isfying Assumption 4.3.1 converge to a pure Nash equilibrium almost surely.

We provide a complete proof for the above result in the Appendix of this chapter.
We note that, in contrast to the existing weak convergence results for regret matching
in general games, the above result characterizes the long-term behavior of regret based
dynamics with fading memory and inertia, in a strong sense, albeit in a restricted class

of games. We next numerically verify our theoretical result through some simulations.

This assumption can be relaxed to holding for sufficiently layges opposed to atl
20ne could alternatively assume that all pure Nash equilibrium are strict.
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4.4 Simulations

4.4.1 Three Player Identical Interest Game

We extensively simulated the RB iterations for the game considered in Figure 4.1. We
used theR B; function given in (4.4) with inertia factot = 0.5 and discount factor

p = 0.1. In all cases, player action profilest) converged to one of the pure Nash
equilibria as predicted by our main theoretical result. A typical simulation run shown
in Figure 4.2 illustrates the convergence of RB iterations to the pure Nash equilibrium

(D, R, Ms).

P ..
ay(t)
U B

0 50 100 150 200 250 300
time step: t
R b e oo e
L O
L L L L L
0 50 100 150 200 250 300

‘ ‘
150 200 250 300
time step: t

Figure 4.2: Evolution of the actions of players using RB.
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4.4.2 Distributed Traffic Routing

We consider a simple congestion game, as defined in Section 2.3.3l0ifflayers
seeking to traverse from node A to node B alérdjfferent parallel roads as illustrated

in Figure 4.3. Each player can select any road as a possible route. In terms of conges-

Road 1

Figure 4.3: Regret Based Dynamics with Inertia: Congestion Game Example — Network Topol-
0ogy

tion games, the set of resources is the set of roRdsind each player can select one

road, i.e.,4; = R.

We will assume that each road has a linear cost function with positive (randomly
chosen) coefficients,

C,,,i(k’) = (Iik’ + bia Z = 1, ...,5,

wherek represent the number of vehicles on that particular road. This cost function

may represent the delay incurred by a driver as a function of the number of other drivers
sharing the same road. The actual coefficients or structural form of the cost function
are unimportant as we are just using this example as an opportunity to illustrate the

convergence properties of the proposed regret based algorithms.

We simulated a case where drivers choose their initial routes randomly, and every
day thereafter, adjusted their routes using the regret based dynamics witBsthe

function given in (4.4) with inertia factar = 0.85 and discount factop = 0.1. The
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number of vehicles on each road fluctuates initially and then stabilizes as illustrated in
Figure 4.4. Figure 4.5 illustrates the evolution of the congestion cost on each road. One
can observe that the congestion cost on each road converges approximately to the same
value, which is consistent with a Nash equilibrium with large number of drivers. This
behavior resembles an approximate “Wardrop equilibrium” [War52], which represents

a steady-state situation in which the congestion cost on each road is equal due to the
fact that, as the number of drivers increases, the effect of an individual driver on the

traffic conditions becomes negligible.

— Road 1
— Road 2
— Road 3
— Road4 _|
— Road 5

Number of Drivers on Each Road

I I I I
0 50 100 150 200 250
Iteration Number

Figure 4.4. Regret Based Dynamics with Inertia: Evolution of Number of Vehicles on Each
Route

We would like to note that the simplistic nature of this example was solely for
illustrative purposes. Regret based dynamics could be employed on any congestion
game with arbitrary network topology and congestion functions. Furthermore, well
known learning algorithms such as fictitious play [MS96a] could not be implemented

even on this very simple congestion game. A driver using fictitious play would need
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— Road 1
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— Road 4
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Figure 4.5: Regret Based Dynamics with Inertia: Evolution of Congestion Cost on Each Route

to track the empirical frequencies of the choices of@bether drivers and compute

an expected utility evaluated over a probability space of dimerigion

We would also like to note that in a congestion game, it may be unrealistic to
assume that players are aware of the congestion function on each road. This implies
that each driver is unaware of his own utility function. However, even in this setting,
regret based dynamics can be effectively employed under the condition that each player
can evaluate congestion levels on alternative routes. On the other hand, if a player
is only aware of the congestion experienced, then one would need to examine the
applicability of payoff based algorithms [MYAQO7] which will be discussed in detail in

the following chapter.
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4.5 Concluding Remarks and Future Work

In this chapter we analyzed the applicability of regret based algorithms on multi-agent
systems. We demonstrated that a point of no-regret may not necessarily be a desirable
operating condition. Furthermore, the existing results on regret based algorithms do
not preclude these inferior operating points. Therefore, we introduced a modification
of the traditional no-regret algorithms that (i) exponentially discounts the memory and
(i) brings in a notion of inertia in players’ decision process. We showed how these
modifications can lead to an entire class of regret based algorithms that provide con-
vergence to a pure Nash equilibrium in any weakly acyclic game. We believe that
similar results hold for no-regret algorithms without fading memory and inertia but

thus far the proofs have been elusive.

4.6 Appendix to Chapter 4

4.6.1 Proof of Theorem 4.3.1

We will first state and prove a series of claims. The first claim states that if at any time
a player plays an action with positive regret, then the player will play an action with

positive regret at all subsequent time steps.

Claim 4.6.1. Fix anyt, > 1. Then,
R () > 0 = R (1) > 0

)

for all ¢ > t,.
Proof. Supposek? ™ (t,) > 0. We have

Rzi(to)(to +1)=(1- p)g)%(to)(to) > 0.

7
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If CLZ‘(T,Q + 1) = ai<t0), then
RO (40 41) = R (1 4+1) > 0.

If ai(to + 1) 7& ai(to), then
RO (104 1) > 0.

()

The argument can be repeated to show frfa@(t) > 0, forall t > t,. O
Define

M, = max{Ua):a€ A P, € P},
m, = min{U;(a):a € A,P; € P},
§ = min{|U;(a') — U;(a®)| > 0:
a',a* € A,a', = a*,, P € P},
N = min{ne {1,2,..}:
(1= (1=p)™)5 = (1= p)"(My, — my) > 6/2},
fo= min{RB[(z) : 2] < My —my, VL,

z™ > 6/2, foronem, VP; € P}.

Note thats, f > 0, and|R%(t)| < M, — m,, forall P, € P, a; € A;, t > 1.

The second claim states a condition describing the absorptive properties of a strict

Nash equilibrium.

Claim 4.6.2. Fix ty > 1. Assume
1. a(ty) is a strict Nash equilibrium, and
2. R?i(tO)(to) > 0 for all P; € P, and

3. a(ty) =alto+1)=..=alty+ N —1).
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Then,a(t) = a(ty), for all t > t,.
Proof. For anyP; € P and anya,; € A;, we have

Ri(to+N) = (1-p)NE(to)
+(1 — (1 — p)N) (Ui(ai, a_i<t0))
—Ui(ai@o),a_i(to))).

Sincea(ty) is a strict Nash equilibrium, for an; € P and anya; € A;, a; # a;(ty),

we have
Ui(a;, a_i(to)) — Ui(a;(to), a—i(to)) < —o0.
Therefore, for anyP; € P and anyu; € A;, a; # a;(to),

Reilto+ N) < (1= p)N(My —ma) — (1= (1= p)™)3

< —0/2<0.
We also know that, for alP; € P,
Rty + N) = (1= p)V BRI (1) > 0.
This proves the claim. O

The third claim states an event, and associated probability, where the ensuing joint

action is a better response to the current joint action profile.

Claim 4.6.3. Fix ty > 1. Assume
1. a(ty) is not a Nash equilibrium, and

2. a(to) = a(to + 1) = ... = a(to + N — 1)
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Leta* = (a},a_;(to)) be such that
Ui(a;,a_i(to)) > Ui(ai(to), a—i(to)),
for someP; € P and some:; € A;. Then,Rff (to + N) > /2, anda* will be chosen

at stept, + N with at least probabilityy := (1 — €)"l¢f.

Proof. We have

Ri(tg+N) > —(1—p)N(My—m,)+ (1~ (1L p)")

> §/2.

Therefore, the probability of playéd?; choosinga! at stept, + N is at leaskf. Be-
cause of players’ inertia, all other players will repeat their actions attgtepV with
probability at least1 — €)"~!. This means that the action profite will be chosen at

stept, + N with probability at leasf1 — )" lef. O

The fourth claim identifies a particular event, and associated probability, guar-
anteeing that each player will only play actions with positive regret as discussed in

Claim4.6.1.

Claim 4.6.4. Fix t, > 1. We haveR""(¢) > 0 for all t > t, + 2Nn and for all
P; € P with probability at least

L |
y(1 =@
g | Al

Proof. Let a® := a(ty). Supposeéf’?(to) < 0. Furthermore, suppose thel is re-
peatedV consecutive times, i.e(ty) = ... = a(ty + N — 1) = a°, which occurs with
at least probability at leagt — &)"(V=1),

If there exists av* = (a},a’,) such that;(a*) > U;(a"), then, by Claim 4.6.3,
E{f (to + N) > 6/2 anda* will be chosen at stepy + N with at least probabilityy.
Conditioned on this, we know from Claim 4.6.1 that " (¢) > 0 forall t > ¢, + N.
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If there does not exist such an actian thenﬁi;“ (to+ N) <0foralla; € A;. An
action profile(a?, a°,;) with U;(a¥, a° ;) < U;(a®) will be chosen at stefy + N with at
least probability- (1—€)"~*. If a(ty+N) = (af’,a?,), and if furthermoréay’, a?,) is
repeatedV consecutive times, i.ea(to + N) = ... = a(to + 2N — 1), which happens
with probability at least{1 — €)*V=1, then, by Claim 4.6.3]??9(150 +2N) > /2
and the action profila® will be chosen at steft, + 2/N) with at least probabilityy.

Conditioned on this, we know from Claim 4.6.1 thet " (1) > 0 for all ¢ > ¢, + 2NN.
In summary,R“l(t (t) > 0forallt >ty + 2N with at least probability

B
|A;il

7(1 o E)2Nn.

We can repeat this argument for each player to showfﬁﬁé’i) (t) > 0 for all times

t >ty + 2Nn and for allP; € P with probability at least

n
| | 2N7L

FINAL STEP: Establishing convergence to a strict Nash equilibrium:

Proof. Fix t, > 1. Definet; := t, + 2Nn. Leta!,a?, ..., a* be a finite sequence of

action profiles satisfying the conditions given in Subsection 2.3.4 alite= a(t,).

SupposeR“l(t)( t) > 0 forallt > t; and for allP; € P, which, by Claim 4.6.4,

occurs with probability at least

n
H 2Nn

Suppose further that(t;) = ... = a(t; + N — 1) = a' which occurs with at least

probability (1 —€)"¥~1)_ According to Claim 4.6.3 the action profité will be played
at stept, := t; + N with at least probabilityy. Suppose now(ts) = ... = a(ty +

73



N — 1) = a?, which occurs with at least probability — #)"(V=1, According to
Claim 4.6.3, the action profile® will be played at steg; := ¢, + N with at least
probability-y.

We can repeat the above arguments until we reach the strict Nash equilirium
at stept;, (recursively defined as above) and stay’afor N consecutive steps. From

Claim 2, this would mean that the action profile would stay’ator all t > ;.

Therefore, giveri, > 1, there exists constaniés> 0 and7" > 0, both of which are
independent of,, and a strict Nash equilibriumi*, such that the following event hap-

pens with at least probabili#y a(t) = o* forall t > t, +T. This proves Theorem 4.1.

]
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CHAPTER 5

Payoff Based Dynamics for Weakly Acyclic Games

We consider repeated multi-player games in which players repeatedly and simulta-
neously choose strategies from a finite set of available strategies according to some
strategy adjustment process. We focus on the specific class of weakly acyclic games,
which is particularly relevant for multi-agent cooperative control problems. A strat-
egy adjustment process determines how players select their strategies at any stage as
a function of the information gathered over previous stages. Of particular interest
are “payoff based” processes, in which at any stage, players only know their own ac-
tions and (noise corrupted) payoffs from previous stages. In particular, players do not
know the actions taken by other players and do not know the structural form of payoff
functions. We introduce three different payoff based processes for increasingly gen-
eral scenarios and prove that after a sufficiently large number of stages, player actions
constitute a Nash equilibrium at any stage with arbitrarily high probability. We also
show how to modify player utility functions through tolls and incentives in so-called
congestion games, a special class of weakly acyclic games, to guarantee that a central-
ized objective can be realized as a Nash equilibrium. We illustrate the methods with a

simulation of distributed routing over a network.
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5.1 Introduction

The objective in distributed cooperative control for multi-agent systems is to enable
a collection of “self-interested” agents to achieve a desirable “collective” objective.
There are two overriding challenges to achieving this objective. The first is complexity:
finding an optimal solution by a centralized algorithm may be prohibitively difficult
when there are large numbers of interacting agents. This motivates the use of adaptive
methods that enable agents to “self organize” into suitable, if not optimal, collective

solutions.

The second challenge is limited information. Agents may have limited knowledge
about the status of other agents, except perhaps for a small subset of “neighboring”
agents. An example is collective motion control for mobile sensor platforms (e.g.,
[GSMO05]). In these problems, mobile sensors seek to position themselves to achieve
various collective objectives such as rendezvous or area coverage. Sensors can com-
municate with neighboring sensors, but otherwise do not have global knowledge of the

domain of operation or the status and locations of non-neighboring sensors.

A typical assumption is that agents are endowed with a reward or utility function
that depends on their own strategies and the strategies of other agents. In motion
coordination problems, for example, an agent’s utility function typically depends on
its position relative to other agents or environmental targets, and knowledge of this

function guides local motion adjustments.

In other situations, agents may know nothing about the structure of their utility
functions, and how their own utility depends on the actions of other agents (whether lo-
cal or far away). In this case the only thing they can do is observe rewards based on ex-
perience and “optimize” on a trial and error basis. The situation is further complicated

because all agents are trying simultaneously to optimize their own strategies. There-

76



fore, even in the absence of noise, an agent trying the same strategy twice may see

different results because of the non-stationary nature of the strategies of other agents.

There are several examples of multi-agent systems that illustrate this situation. In
distributed routing for ad hoc data networks (e.g., [BK03]), routing nodes seek to route
packets to neighboring nodes based on packet destinations without knowledge of the
overall network structure. The objective is to minimize the delay of packets to their
destinations. This delay must be realized through trial and error, since the functional
dependence of delay on routing strategies is not known. A similar problem is automo-
tive traffic routing, in which drives seek to minimize the congestion experienced to get
to a desired destination. Drivers can experience the congestion on selected routes as a
function of the routes selected by other drivers, but drivers do not know the structure of
the congestion function. Finally, in a multi-agent approach to designing manufacturing
systems (e.g., [Ger94]), it may not be known in advance how performance measures
(such as throughput) depend on manufacturing policy. Rather performance can only

be measured once a policy is implemented.

Our interest in this chapter is to develop algorithms that enable coordination in
multi-agent systems for precisely this “payoff based” scenario, in which agents only
have access to (possibly noisy) measurements of the rewards received through repeated
interactions with other agents. We adopt the framework of “learning in games” (see
[FL98, Har05, You98, You05] for an extensive overview). Unlike most of the learning
rules in this literature, which assume that agents adjust their behavior based on the
observed behavior of other agents, we shall assume that agents know only their own
past actions and the payoffs that resulted. It is far from obvious that Nash equilibrium
can be achieved under such arestriction, but in fact it has recently been shown that such

“payoff based” learning rules can be constructed that work in any game [FY06, GL].

In this chapter we show that there are simpler and more intuitive adjustment rules
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that achieve this objective for a large class of multi-player games known as “weakly
acyclic’ games. This class captures many problems of interest in cooperative control
[MASO7a, MASO7b]. It includes the very special case of “identical interest” games,
where each agent receives the same reward. However, weakly acyclic games (and the
related concept of potential games) capture other scenarios such as congestion games
[Ros73] and similar problems such as distributed routing in networks, weapon tar-
get assignment, consensus, and area coverage. See [MAS05, AMSO07] and referenced
therein for a discussion of a learning in games approach to cooperative control prob-
lems, but under less stringent assumptions on informational constraints considered in

this chapter.

For many multi-agent problems, operation at a pure Nash equilibrium may reflect
optimization of a collective objective.We will derive payoff based dynamics that
guarantee asymptotically that agent strategies will constitute a pure Nash equilibrium
with arbitrarily high probability. It need not always be the case that at least one Nash
equilibrium optimizes a collective objective. Motivated by this consideration, we also
discuss the introduction of incentives or tolls in a player’s payoff function to assure
that there is at least one Nash equilibrium that optimizes a collective objective. Even

in this case, however, there may still be suboptimal Nash equilibria.

The remainder of this chapter is organized as follows. Section 5.2 introduces three
types of payoff based dynamics in for increasingly general problems. Section 5.2.1
presents “Safe Experimentation Dynamics” which is restricted to identical interest
games. Section 5.2.2 presents “Simple Experimentation Dynamics” for the more gen-
eral class of weakly acyclic games but with noise free payoff measurements. Sec-
tion 5.2.3 presents “Sample Experimentation Dynamics” for weakly acyclic games

with noisy payoff measurements. Section 5.3 discusses how to introduce tolls and

I'Nonetheless, there are varied viewpoints on the role of Nash equilibrium as a solution concept for
multi-agent systems. See [SPGO07] and [MS07].
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incentives in payoffs so that a Nash equilibrium optimizes a collective objective. Sec-
tion 5.4 presents an illustrative example of a traffic congestion game. Finally, Sec-
tion 5.5 contains some concluding remarks. An important analytical tool throughout is
the method of resistance trees for perturbed Markov chains [You93], which is reviewed

in the appendix of this chapter.

5.2 Payoff Based Learning Algorithms

In this section, we will introduce three simple payoff based learning algorithms. The
first, called Safe Experimentatignguarantees convergence to a pure optimal Nash
equilibrium in any identical interest game. Such an equilibrium is optimal because
each player’s utility is maximized. The second learning algorithm, ceflieaple
Experimentationguarantees convergence to a pure Nash equilibrium in any weakly
acyclic game. The third learning algorithm, call8dmple Experimentatioiguaran-

tees convergence to a pure Nash equilibrium in any weakly acyclic game even when

utility measurements are corrupted with noise.

For each learning algorithm, we consider a repeated strategic form game, as de-
scribed in Section 2.4, with-player setP := {P, ..., P, }, a finite action set4; for
each playefP; € P, and a utility functionU; : A — R for each playe; € P, where
A=A, x---x A,.
5.2.1 Safe Experimentation Dynamics for Identical Interest Games
5.2.1.1 Constant Exploration Rates

Before introducing the learning dynamics, we introduce the following function. Let

Ur™(t) == max Us(a(T))

0<7<t~1
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be the maximum utility that playéP; has received up to time— 1.

We will now introduce the Safe Experimentation dynamics for identical interest

games; see Section 2.3.1 for a review of identical interest games.

1. Initialization: Attimet = 0, each player randomly selects and plays any action,
a;(0). This action will be initially set as the playeib@seline actiorat timet = 1

and is denoted by?(1) = a;(0).

2. Action Selection: At each subsequent time step, each player selects his baseline
action with probability(1 — €) or experiments with a new random action with

probabilitye, i.e.:

e a;(t) = ab(t) with probability (1 — ¢)

e a;(t) is chosen randomly (uniformly) oves with probability e
The variable: will be referred to as the player&xploration rate

3. Baseline Strategy Update:Each player compares the actual utility received,
U;(a(t)), with the maximum received utility/™**(¢) and updates his baseline
action as follows:

ai(t), Ui(a(t)) > U™(t);

ab(t+1) =
ai(t), Uila(t)) < UP™(t).

)

This step is performed whether or not Step 2 involved exploration.

4. Return to Step 2 and repeat.

The reason that this learning algorithm is called “Safe” Experimentation is that
the utility evaluated at the baseline actidf(a’(t)), is non-decreasing with respect to

time.
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Theorem 5.2.1.Let G be a finiten-player identical interest game in which all players
use the Safe Experimentation dynamics. Given any probapiityl, if the exploration
rate e > 0 is sufficiently small, then for all sufficiently large timegs(t) is an optimal

Nash equilibrium of> with at least probabilityp.

Proof. Sinced is an identical interest game, let the utility of each player be expressed

asU : A — R and letA* be the set of “optimal” Nash equilibrium @, i.e.,

A" ={a" € A:U(a") =maxU(a)}.

acA

For any joint actiona(t), the ensuing joint action will constitute an optimal Nash

equilibrium with at least probability

() () - ()

where|.4;| denotes the cardinality of the action set of plajerTherefore, an optimal

Nash equilibrium will eventually be played with probability 1 for any 0.

Suppose an optimal Nash equilibrium is first played at tiimee.,a(t*) € A* and
a(t* — 1) ¢ A*. Then the baseline joint action must remain constant from that time
onwards, i.e.a’(t) = a(t*) for all t > t*. An optimal Nash equilibrium will then be
played at any time > ¢* with at least probabilityf1 — ¢)™. Sincee > 0 can be chosen

arbitrarily small, and in particular such th@dt— €)™ > p this completes the proof.[]

5.2.1.2 Diminishing Exploration Rates

In the Safe Experimentation dynamics, the explorationaatas defined as a constant.
Alternatively, one could let the exploration rate vary to induce desirable behavior. One
example would be to let the exploration rate decay, sueh as(1/t)'/". This would

induce exploration at early stages and reduce exploration at later stages of the game.
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The theorem and proof hold under the following conditions for the exploration rate:

lim ¢, = 0,

t—o00

tlil?o; [1_ (IZI)<IZQI) <|jn|)] -

5.2.2 Simple Experimentation Dynamics for Weakly Acyclic Games

We will now introduce the Simple Experimentation dynamics for weakly acyclic games;
see Section 2.3.4 for a review of weakly acyclic games. These dynamics will allow us

to relax the assumption of identical interest games.

1. Initialization: Attimet = 0, each player randomly selects and plays any action,
a;(0). This action will be initially set as the playertsaseline actiorat time 1,
i.e.,a’(1) = a;(0). Likewise, the playerdaseline utilityat time 1 is initialized

asul(1) = Ui(a(0)).

2. Action Selection: At each subsequent time step, each player selects his baseline
action with probability(1 — ¢) or experiments with a new random action with

probabilitye.
e a;(t) = a’(t) with probability (1 — ¢)
e a;(t) is chosen randomly (uniformly) over with probability e

The variablec will be referred to as the player&sxploration rate Whenever

a;(t) # ab(t), we will say that playeP; experimented

3. Baseline Action and Baseline Utility Update:Each player compares the utility
received[J;(a(t)), with his baseline utility;:?(¢), and updates his baseline action

and utility as follows:

o If player P; experimentedi.e.,a;(t) # at(t)) and if U;(a(t)) > ub(t) then
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ab(t+1) = a;(t),
ul(t + 1) = Ui(a(t)).

e If player P; experimenteénd if U; (a(t)) < ul(t) then
al(t +1) = al(t),
ub(t + 1) = ul(t).

e If player P; did not experimenfi.e., a;(t) = al(t)) then
al(t +1) = al(t),

ub(t + 1) = Uy(a(t)).

4. Return to Step 2 and repeat.

As before, these dynamics require only utility measurements, and hence almost no

information regarding the structure of the game.

Theorem 5.2.2.Let G be a finiten-player weakly acyclic game in which all players
use the Simple Experimentation dynamics. Given any probapilityl, if the explo-
ration ratee > 0 is sufficiently small, then for all sufficiently large timgs:(¢) is a

Nash equilibrium of> with at least probabilityp.

The remainder of this subsection is devoted to the proof of Theorem 5.2.2. The
proof rely on the theory of resistance trees for perturbed Markov chains (see the ap-

pendix of this chapter for a brief review).

Define thestateof the dynamics to be the pdit, u], wherea is the baseline joint
action andu is the baseline utility vector. We will omit the superscripto avoid

cumbersome notation.

Partition the state space into the following three sets. Firsk le¢ the set of states
la, u] such thatu; # U;(a) for at least one playeP;. Let E be the set of statds, u|

such thaty; = U;(a) for all playersP; anda is a Nash equilibrium. LeD be the set
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of statega, u| such that; = U;(a) for all playersP; anda is a disequilibrium (not a

Nash equilibrium). These are all the states.

Claim5.2.1. a. Any statéa, u| € X transitions to a state i U D in one period

with probability O(1).

b. Any statda,u] € E U D transitions to a different statg/’, «'] with probability
at mostO(e).

Proof. For any[a, '] € X, there exists at least one play@rsuch that.;, # U;(a). If

all players repeat their part of the joint action profilevhich occurs with probability
(1 —¢)", then]a,v’] transitions toa, u], whereu; = U;(a) for all playersP;. Thus
the process moves fo,u] € E U D with probO(1). This proves statement (a). As
for statement (b), any state il U D transitions back to itself whenever no player

experiments, which occurs with probability at leéxtl ). O

Claim 5.2.2. For any statela, u] € D, there is a finite sequence of transitions to a

state[a*, u*] € E, where the transitions have the fotm

la,u] — [a'u'] — ... — [a" u¥]
O(e) O(e)  O(9)

whereuf = U;(a*) for all i and for all £ > 0, and each transition occurs with proba-

bility O(e).

Proof. Such a sequence is guaranteed by weak acyclicity. Sinsenot an equilib-

rium, there is a better reply path fromto some equilibriuna*, saya, a', a?, ..., a*.

At [a, u] the appropriate playegP; experiments with probability, chooses the ap-

propriate better reply with probability/|.A;

, and no one else experiments. Thus the

process moves ta', u'] whereu! = U;(a') for all playersP; with probability O(e).

2\We will use the notation — 2’ to denote the transition from stateto statez’. We use: O?) Z' to
€

emphasize that this transition occurs with probability of order
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Notice that for the deviatoP;, U;(a') > U;(a), thereforeu! = U;(a'). For the non-
deviator, say playeP;, u; = U;(a') sinceaj = a;. Thus[a',u'] € DU E. In the next

period, the appropriate player deviates and so forth.

O

Claim 5.2.3. For any equilibrium[a*, u*| € E, any path fronja*, u*| to another state
la,u] € EU D, a # o, that does not loop back t@*, «*| must be of one of the

following two forms:

1. [a*,u*] — [a*,d] — [d,u"] — ... = la,u], wherek > 2;
O(e) O(ek)

2. [a*, u] (—;) [d',u"] — ... — [a,u], wherek > 2.
O(e*

Proof. The path must begin by either one player experimenting or more that one player
experimenting. Case (2) results if more than one player experiments. Case (1) results
if exactly one agent, say ageRt, experiments with an actios, # ! and all other
players continue to play their part @f. This happens with probabilit?fl—i'(l —e)n L,

In this situation, playef®; cannot be better off, meaning thét(a},a*,) < U;(a*),

since by assumptioa* is an equilibrium. Hence the baseline action next period re-
mainsca* for all players, though their baseline utilities may change. Denote the next
state by[a*, «']. If in the subsequent period all players continue to play their part of
the actiona* again, which occurs with probability — ¢)”, then the state reverts back

to [a*, u*] and we have a loop. Hence the only way the path can continue without a
loop is for one or more players to experiment in the next stage, which has probability

O(€*), k > 1. This is exactly what case (1) alleges.

]

Proof of Theorem 5.2.2This is a finite aperiodic Markov process on the state space

A x U, whereU denotes the finite set of baseline utility vectors. Furthermore, from
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every state there exists a positive probability path to a Nash equilibrium. Hence, every
recurrent class has at least one Nash equilibrium. We will now show that within any
recurrent class, the trees (see the appendix of this chapter) rooted at the Nash equi-
librium will have the lowest resistance. Therefore, according to Theorem 5.6.1, the
a priori probability that the state will be a Nash equilibrium can be made arbitrarily

closeto 1.

In order to apply Theorem 5.6.1, we will construct minimum resistance trees with
vertices consisting of every possible state (within a recurrence class). Each edge will
have resistance 1, 2, ... associated with the transition probabilities
O(1),0(e),0(e?), ..., respectively.

Our analysis will deviate slightly from the presentation in the appendix. In the dis-
cussion in the appendix, the vertices of minimum resistance trees are recurrence classes
of an associated unperturbed Markov chain. In this case, the unperturbed Markov chain
corresponds to Simple Experimentation dynamics with 0, and so the recurrence
classes are all states iU D. Nonetheless, we will construct resistance trees with the
vertices being all possible states, i.8lJ DU X. The resulting conclusions remain the
same. Since the stateshare transient with probabilit§)(1), the resistance to leave
a node corresponding to a stateXnis zero. Therefore, the presence of such states

does not affect the conclusions determining which states are stochastically stable.

Suppose a minimum resistance trées rooted at a vertex that is not inFE.
If v € X, itis easy to construct a new tree that has lower resistance. Namely, by
Claim 5.2.1a, there is a O-resistance one-hop pgatihom v to some statéa, u] €
E U D. Add the edge of? to T" and subtract the edge ih that exits from the vertex
[a, u]. This results in da, u]-treeT”. It has lower resistance thd&hbecause the added
edge has zero resistance while the subtracted edge has resistance greater than or equal

to 1 because of Claim 5.2.1b. This argument is illustrated in Figure 5.1, where the red
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edge of strictly positive resistance is removed and replaced with the blue edge of zero

resistance.
Original Tree T (Rooted in X) Revised Tree T' (Rooted in D or E)
[a, u"] [a, u]
\L R>1 l
[a, u] [a, u] [au] —> [aul
T R=0 T
[a,u] «— [a, ] @, u] «— [a u]

Figure 5.1: Construction of alternative to tree rootein

Suppose nextthat= [a,u| € D butnotinE. Construct a pat as in Claim 5.2.2
from [a, u| to some statéu*, u*] € E. As above, construct a new trgé rooted at
la*, u*] by adding the edges d? to 7" and taking out the redundant edges (the edges
in T that exit from the vertices i?). The nature of the pati guarantees that the
edges taken out have total resistance at least as high as the resistances of the edges put
in. This is because the entire pathlies in £ U D, each transition on the path has
resistancd, and, from Claim 5.2.2b, the resistance to leave any statelnD is at

least 1.

To construct a new tree that has strictly lower resistance, we will inspect the effect
of removing the exiting edge frofa*, v*] in 7. Note that this edge must fit either case
(1) or case (2) of Claim 5.2.3.

In case (2), the resistance of the exiting edge is at [2asgthich is larger than
any edge inP. Hence the new tree has strictly lower resistance thawhich is a
contradiction. This argument is illustrated in Figure 5.2. A new path is created from

the original rootja, u] € D to the equilibrium[a*, u*| € E (blue edges). Redundant
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(red) edges emanating from the new path are removed. In case (2), the redundant edge

emanating froma*, u*| has a resistance of at le&st

Original Tree T (Rooted in D - Case 2) Revised Tree T' (Rooted in E)

[au] <«<— [au] [a, u] [a, u]

[a, u] [, u] €«— [a,u"] [a u] [, u] [a, u
T R=1 \L

R>1
[a", u’] [a*, uT] [a", u"] [a*, u1]
R>2 R :\
[a*, U*] [a*' U*]

Figure 5.2: Construction of alternative to tree rootedirior Case (2).

In case (1), the exiting edge has the fduh «*] — [a*, v/] which has resistance 1
whereu* # «'. The next edge iff’, say[a*, v/] — [d/,u"], also has at least resistance
1. Remove the edge*, '] — [a/,u"] from T, and put in the edgg*, v'] — [a*, u*].

The latter has resistance O sineé, «/] € X. This results in a tre@"” that is rooted
at[a*, u*] and has strictly lower resistance than d@gsvhich is a contradiction. This
argument is illustrated in Figure 5.3. As in Figure 5.2, a new (blue) path is constructed
and redundant (red) edges are removed. The difference is that thd«#dgé —

[a’, v"] is removed and replaced witl*, v'] — [a*, u*].

To recap, a minimum resistant tree cannot be rooted at any stafeoinD, and
therefore can only be rooted . Therefore, whea is sufficiently small, the long-run
probability onE' can be made arbitrarily close to 1, and in particular larger than any

specified probability. ]
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Original Tree T (Rooted in D - Case 1)

au] <«<— [au]

R>1
[a, U'] [alr U'] 6 [a'| U"]
R>1
R>1
fa, o o,
R=1
[a* u]

Revised Tree T' (Rooted in E)

au «— [au]
T R=1
[a, uT] [ u] <«<— [a,u]
R=1 \L
e, u' 2, u]
R =\ R=0

Figure 5.3: Construction of alternative to tree rootedifior Case (1).

5.2.3 Sample Experimentation Dynamics for Weakly Acyclic Games with Noisy

Utility Measurements

5.2.3.1 Noise-free Utility Measurements

In this section we will focus on developing payoff based dynamics for which the limit-

ing behavior exhibits that of a pure Nash equilibrium with arbitrarily high probability

in any finite weakly acyclic gameven in the presence of utility noisé/e will show

that a variant of the so-called Regret Testing algorithm [FY06] accomplishes this ob-

jective for weakly acyclic games with noisy utility measurements.

We now introduce Sample Experimentation dynamics.

1. Initialization: Attimet = 0, each player randomly selects and plays any action,

a;(0) € A;. This action will be initially set as the playerlsaseline action

al(1) = a;(0).

7

2. Exploration Phase: After the baseline action is set, each player engages in an



exploration phas@ver the nexin periods. The length of the exploration phase
need not be the same or synchronized for each player, but we will assume that
they are for the proof. For convenience, we will double index the time of the
actions played as

d(tl, t2) = a(m tl + t2)

wheret; indexes the number of the exploration phase@anddexes the actions
played in that exploration phase. We will refer#oas theexploration phase
time and ¢, as theexploration action time By construction, the exploration
phase time and exploration action time satisfy> 1 andm > t, > 1. The
baseline action will only be updated at the end of the exploration phase and will

therefore only be indexed by the exploration phase time.

During the exploration phase, each player selects his baseline action with prob-
ability (1 — €) or experiments with a new random action with probab#ityf hat
is, for any exploration phase timg > 1 and for any exploration action time

satisfyingm > t, > 1,
e G;(t1,t2) = al(t1) with probability (1 — ¢),
e a;(t1,t2) is chosen randomly (uniformly) ovér; \ a2 (t,)) with probability
€.

Again, the variable will be referred to as the playeréxploration rate

. Action Assessment:After the exploration phase, each player evaluates the av-
erage utility received when playing each of his actions during the exploration
phase. Lew; (t;) be the number of times that play®¥ played actioru; dur-

ing the exploration phase at timg The average utility for action; during the
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exploration phase at timg is

i 2otemt Hai = aitr, 02)}Ui(a(t t2), i (t) > 0;

Unin, n%(t;) = 0,

V() =

wherel{-} is the usual indicator function arid,;, satisfies

Umin < minmin U;(a).
i acA

In words, Ui, is less than the smallest payoff any agent can receive.

4. Evaluation of Better Response SetEach player compares the average utility
received when playing his baseline acticf@‘f?(t)(tl), with the average utility
received for each of his other actioi§ (¢, ), and finds all played actions which
performed) better than the baseline action. The térmill be referred to as the

players’tolerance levelDefine A}(t,) to be the set of actions that outperformed

the baseline action as follows:
Ar(t)) = {ai €A V() > VS ) + 5} . (5.1)

5. Baseline Strategy Update:Each player updates his baseline action as follows:
o |If Aj(tl) = (Z), thenaf(tl + 1) = (]J?(tl)
o If Aj(t1) # 0, then

— With probabilityw, seta’(t; + 1) = ab(¢;). (We will refer tow as the
player’s inertia.)
— With probability 1 — w, randomly select:?(t; + 1) € Aj(t;) with

uniform probability.

6. Return to Step 2 and repeat.
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For simplicity, we will first state and prove the desired convergence properties
using noiseless utility measurements. The setup for the noisy utility measurements

will be stated afterwards.

Before stating the following theorem, we define the constant 0 as follows.
If U;(a') # U;(a®) for any joint actionsa', > € A and any playefP; € P, then
|U;(a') — U;(a?)| > a. In words, if any two joint actions result in different utilities at

all, then the difference would be at least
Theorem 5.2.3.Let G be a finiten-player weakly acyclic game in which all players
use the Sample Experimentation dynamics. For any

e probabilityp < 1,

e tolerance leveb € (0, «),

e inertiaw € (0,1), and

e exploration ratee satisfyingmin{(« — ¢)/4,6/4,1 —p} > (1 — (1 —¢)") > 0,

if the exploration phase length is sufficiently large, then for all sufficiently large

timest > 0, a(t) is a Nash equilibrium o7 with at least probabilityp.

The remainder of this subsection is devoted to the proof of Theorem 5.2.3.

We will assume for simplicity that utilities are between -1/2 and 1/2,[L&(a)| <
1/2 for any playerP; € P and any joint actiom € A.

We begin with a series of useful claims. The first claim states that for any player
P; the average utility for an action € .4; during the exploration phase can be made

arbitrarily close (with high probability) to the actual utility the player would have re-

ceived provided that all other players never experimented. This can be accomplished
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if the experimentation rate is sufficiently small and the exploration phase length is

sufficiently large.

Claim 5.2.4. Leta® be the joint baseline action at the start of an exploration phase of

lengthm. For
e any probabilityp < 1,
e anys* > 0, and
e any exploration rate > 0 satisfyingd*/2 > (1 — (1 —¢)"!) > 0,
if the exploration phase length is sufficiently large then
Pr [HA/Z“Z — Ui(a;,a”;)| > 5*] <1l-p.

Proof. Letn;(a;) represent the number of times play&rplayed actioru; during the
exploration phase. In the following discussiati, probabilities and expectations are
conditioned onn;(a;) > 0. We omit making this explicit for the sake of notational
simplicity. The event;(a;) = 0 has diminishing probability as the exploration phase
lengthm increases, and so this case will not affect the desired conclusions for increas-

ing phase lengths.

For an arbitrary* > 0,

Pr UVZ“ — Ui(a;,a”;)| > 5*]

<Pr [";;ai — E{‘};al} + |E{‘A/Zal} _ Uz(a“ab_l)’ > 5*}

< Pr [W;‘” ~ B{VS) ] > 5*/2] +Pr [\E{W} — Uias,d",)| > 5*/2] .

v~ ~~

(*) (x)

First, let us focus off«x). We have

(V) = Uilas,a?,) = [1 = (1= 9" [B{Ui(as, a—i(t)la—i(t) # a3} ~ Uilaisa”)]
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which approacheg ase | 0. Therefore, for any exploration ratesatisfyingé*/2 >

(1—(1=¢)"1) >0, we know that
Pr [\E{Vfl‘} — Ui(az, a*,)| > 5*/2} ~0.

Now we will focus on(x). By the weak law of large numberés) approache$ as
n;(a;) T co. This implies that for any probability < 1 and any exploration rate> 0,

there exists a sample siz¢(a;) such that ifn;(a;) > n}(a;) then

Pr ||V — B{V;"}

>p/2] <1l-p.

Lastly, for any probabilityy < 1 and any fixed exploration rate, there exists a minimum

exploration lengthn > 0 such that for any exploration length > m,
Pr[ni(a;) = nj(a:)] = p.

In summary, for any fixed exploration ratesatisfyingé*/2 > (1 — (1 —¢)" 1) > 0,
(%) + (xx) can be made arbitrarily close @oprovided that the exploration lengthis

sufficiently large. O

Claim 5.2.5. Leta’ be the joint baseline action at the start of an exploration phase of

lengthm. For any
e probabilityp < 1,
e tolerance leveb € (0, «), and
e exploration ratec > 0 satisfyingmin{(« — §)/4,6/4} > (1 — (1 — )" 1) > 0,

if the exploration lengthn is sufficiently large, then each player’s better response set
a; will contain only and all actions that are a better response to the joint baseline
action, i.e.,

ai € A; & Ui(al,a”,) > Ui(a)

with at least probabilityp.
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Proof. Suppose:’ is not a Nash equilibrium. For some playBr € P, leta; be a
strict better reply to the baseline joint action, il&(a},a’ ;) > U;(a’) and leta? be a
non-better reply to the baseline joint action, L&(a¥, a’ ;) < U;(a®).

Using Claim 5.2.4, for any probabilityg < 1 and any exploration rate > 0
satisfyingmin{(a — 0)/4,6/4} > (1 — (1 — ¢)" ) > 0 there exists a minimum
exploration lengthm > 0 such that for any exploration length > m the following

expressions are true:

Pr (V" — Ui(al, )| < 5] > 5, (5:2)
Pr [V — Ui(af, a2 < 0] > 5 (5.3)
Pr [V~ Uiaa2 )| < 6] = 5 (5.4)

whered* = min{(a — §)/2,/2}. Rewriting equation 5.2 we obtain
Pr ||~ U(al, )| < 6*] < Pr |V = Uial ) < (a = )/2],
and rewriting equation 5.3 we obtain
Pr ||V} = Uaj,al)| < 6] < Pr 0% = Uial,ab) > —(a—9)/2].
at,a’) +a) > —(a — 5)/2} ,
= Pr|V% —Ufd,a",) > (a+ 5)/2] ,

IA
Y
e
S
£
|
S

meaning that
Prlaf € A]] > p°
Similarly, rewriting equation 5.2 we obtain
~ qb ~ ab
Pr [m L Ui(abab)| < 5*] < Pr [v L Ui(ab,ab,) > —5/2} ,

and rewriting equation 5.4 we obtain
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meaning that

Pria ¢ 4] > p"

Sincep can be chosen arbitrarily close to 1, the proof is complete. O

Theorem 5.2.3The evolution of the baseline actions from phase to phase is a finite
aperiodic Markov process on the state space of joint actidngurthermore, sincé’

is weakly acyclic, from every state there exists a better reply path to a Nash equilib-
rium. Hence, every recurrent class has at least one Nash equilibrium. We will show that
these dynamics can be viewed as a perturbation of a certain a Markov chain whose re-
current classes are restricted to Nash equilibria. We will then appeal to Theorem 5.6.1

to derive the desired result.

We begin by defining an “unperturbed” process on baseline actions. Faf any

A, define thetrue better reply set as
") i={a; : Ui(a;, a”;) > Ui(a®) } .
Now define the transition process frait(t,) to a’(¢; + 1) as follows:
o If A(ab(t1)) =0, thenab(t, + 1) = ab(ty).
o If Ar(ab(t1)) # 0, then

— With probabilityw, seta’(t; + 1) = al(t,).

— With probability 1 — w, randomly select® (¢, + 1) € A%(¢;) with uniform
probability.

This is a special case of a so-called “better reply process with finite memory and iner-
tia”. From [YouO5, Theorem 6.2], the joint actions of this process converge to a Nash
equilibrium with probability 1 in any weakly acyclic game. Therefore, the recurrence

classes of this unperturbed are precisely the set of pure Nash equilibria.
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The above unperturbed process closely resembles the Baseline Strategy Update
process described in Step 5 of Sample Experimentation Dynamics. The difference
is that the above process uses the true better reply set, whereas Step 5 uses a better
reply set constructed from experimentation over a phase. However, by Claim 5.2.5, for
any probabilityp < 1, acceptable tolerance lewgland acceptable exploration rate
there exists a minimum exploration phase lengtluch that for any exploration phase
lengthm > m, each player’s better response set will contain only and all actions that

are a strict better response with at least probalility

With parameters selected according to Claim 5.2.5, the transitions of the baseline
joint actions in Sample Experimentation Dynamics follow that of the above unper-
turbed better reply process with probabiljiyarbitrarily close tol. Since the recur-
rence classes of the unperturbed process are only Nash equilibria, we can conclude
from Theorem 5.6.1 that asapproache$, the probability that the baseline action for
sufficiently larget; will be a (pure) Nash equilibrium can be made arbitrarily close to
1. By selecting the exploration probabili¢ysufficiently small, we can also conclude
that the joint action during exploration phases, i€mit; + t»), will also be a Nash

equilibrium with probability arbitrarily close to 1.

5.2.3.2 Noisy Utility Measurements
Suppose that each player receives a noisy measurement of his true utility, i.e.,

Ui(a;,a_;) = Ui(a;, a_;) + v,

wherevy; is an i.i.d. random variable with zero mean. In the regret testing algorithm

with noisy utility measurements, the average utility for actipduring the exploration
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phase at time; is now

~as B % ZZL:1 I{CLZ = di(tl, tg)}UZ(d(tl, tz)), n;-“ (tl) > 0;
Vii(t) =

Umina TL?i (tl) =0.
A straightforward modification of the proof of Theorem 5.2.3 leads to the following

theorem.

Theorem 5.2.4.LetG be afiniten-player weakly acyclic game where players’ utilities
are corrupted with a zero mean noise process. If all players use the regret testing

dynamics, then for any
e probabilityp < 1,
e tolerance leveb € (0, ),
e inertiaw € (0,1), and
e exploration ratee satisfyingmin{(« — 6)/4,5/4,1 —p} > (1 — (1 — €e)") > 0,

if the exploration phase length is sufficiently large, then for all sufficiently large

timest > 0, a(t) is a Nash equilibrium o7 with at least probabilityp.

5.2.3.3 Commenton Length and Synchronization of Players’ Exploration Phases

In the proof of Theorem 5.2.3, we assumed that all players’ exploration phases were
synchronized and of the same length. This assumption was used to ensure that the
baseline action of the other players remained constant when a player assessed the per-
formance of a particular action. Because of the players’ inertia this assumption is
unnecessary. The general idea is as follows: a player will repeat his baseline action
regardless of his better response set with positive probability because of his inertia.

Therefore, if all players repeat their baseline action a sufficient number of times, which

98



happens with positive probability, then the joint baseline action would remain constant
long enough for any player to evaluate an accurate better response set for that particular

joint baseline action.

5.3 Influencing Nash Equilibria in Resource Allocation Problems

In this section we will derive an approach for influencing the Nash equilibria of a
resource allocation problem using the idea of marginal cost pricing. We will illustrate
the setup and our approach on a congestion game which is an example of a resource

allocation problem.

5.3.1 Congestion Game with Tolls Setup

We consider a congestion game, as defined in Section 2.3.3, with a play@r-=set
{P1,...,Pn}, asetof resourceR, and a congestion. : {0,1,2,...} — R for each

resourcer € R.

One approach for equilibrium manipulation is to influence drivers’ utilities with
tolls [San02], as introduced in Section 3.4.2. In a congestion game with tolls, a driver’s
utility takes on the form

Ui(a) = = Y eo(o0(a)) + t,(0,(a)),

T'G.Ai
wheret,. (k) is the toll imposed on routeif there arek users.
In Section 3.4.2, we analyzed the situation in which a global planner was interested
in minimizing the total congestion experienced by all drivers on the network, which

can be evaluated

T.(a) =Y or(a)er(os(a)).

reR

Now suppose that the global planner is interested in minimizingoge general
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measurg,
¢(a) := Y frlor(@)e (o (a)). (5.5)
reR
An example of an objective function that fits within this framework and may be prac-
tical for general resource allocation problems is

o(a) =) elo(a)).

reR

We will now show that there exists a set of tolls(-), such that the potential
function associated with the congestion game with tolls will be aligned with the global

planner’s objective function of the form given in equation (5.5).

Proposition 5.3.1. Consider a congestion game of any network topology. If the im-

posed tolls are set as
tr(k) = (fr(k) = V)er(k) = fr(k = Dern(k = 1), VEk > 1,

then the global planners objectivé.(a) = —¢(a), is a potential function for the

congestion game with tolls.

Proof. Leta! = {a!,a_;} anda® = {a?,a_;}. We will use the shorthand notatiot’
to represent,.(a'). The change in utility incurred by drivel; in changing from route

a? to routea; is

U(a') = Ui(a®) = =Y (e(0) +t,(02) + > (cr(0) +1,(02)),

rEA] reA?
= - Z (CT(U;L1> + tr(afln + Z (CT(U?Q) + tr<0$2))-
reAl\a? reA?\a}

®In fact, if ¢, (0, (a)) # 0 for all a, then (5.5) is equivalent " . fr(o-(a)) where

_ fr(on(a)
fr(ov(a)) = er(on(a))

100



The change in the total negative congestion from the joint aefido o' is

de(a) = dcla®) = — D (flof)e(0r) = fo(0f)er(0f)).

re(atua?)

Since
Yo (frlo)enlor) = fr(o)er(or ) =0,
re(atna?)
the change in the total negative congestion is
qu(al) - ¢C(a2) == Z (fr(agl)cr(ggl) - fr(ag2)cr(gg2))
reA\a?

= Y (fe)e (0l = £(0f e (0l)).

reA?\a}

Expanding the first term, we obtain

ST (£ 0)e0) = f(0)er (o))

reAl\a?

= 3 (foe(of) = (frlo = 1en(ot’ — 1),
reAl\a
= 3 (e (08) = (flo) = Den(08) — t(o))),
reAl\a?
= Z (CT( )+t( ))
reAl\a?

Therefore,

dclal) = de(a®) = = 3 (elof)+tor)) + D (alof) +H(ar),
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By implementing the tolling scheme set forth in Proposition 5.3.1, we guarantee
that all action profiles that minimize the global planner’s objective are equilibrium of

the congestion game with tolls.

In the special case thgt(o,.(a)) = o.(a), then Proposition 5.3.1 produces the

same tolls as in Proposition 3.4.1

5.4 lllustrative Example — Braess’ Paradox

We will consider a discrete representation of the congestion game setup considered in
Braess’ Paradox [Bra68]. In our setting, there are 1000 vehicles that need to traverse
through the network. The network topology and associated congestion functions are
illustrated in Figure 5.4. Each vehicle can select one of the four possible paths to

traverse across the network.

c(k) = k / 1000

Start Finish

o(k) = 1 c(k) = k / 1000

Figure 5.4: Congestion Game Setup — Braess’ Paradox

The reason for using this setup as an illustration of the learning algorithms and
equilibrium manipulation approach developed in this chapter is that the Nash equilib-

rium of this particular congestion game is easily identifiable. The uniqgue Nash equi-
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librium is when all vehicles take the route as highlighted in Figure 5.5. At this Nash

equilibrium each vehicle has a utility of 2 and the total congestion is 2000.

c(k) = k / 1000

ck) =1 Y c(k) = k / 1000

Figure 5.5: lllustration of Nash Equilibrium in Braess’ Paradox.

Since a potential game is weakly acyclic, the payoff based learning dynamics in this
chapter are applicable learning algorithms for this congestion game. In a congestion
game, a payoff based learning algorithms means that drivers have aotess the
actual congestion experienced. Drivers are unaware of the congestion level on any
alternative routes. Figure 5.6 shows the evolution of drivers on routes when using the
Simple Experimentation dynamics. This simulation used an experimentation rate of
e = 0.25%. The colors on the plots are consistent with the colors of each route as
indicated in Figure 5.4. One can observe that the vehicles’ collective behavior does

indeed approach that of the Nash equilibrium.

In this congestion game, it is also easy to verify that this vehicle distribution does
not minimize the total congestion experience by all drivers over the network. The dis-
tribution that minimizes the total congestion over the network is when half the vehicles
occupy the top two roads and the other half occupy the bottom two roads. The middle

road (pink) is irrelevant.
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Figure 5.6: Braess’ Paradox: Evolution of Number of Vehicles on Each Road Using Simple
Experimentation Dynamics

One can employ the tolling scheme developed in the previous section to locally
influence vehicle behavior to achieve this objective. In this setting, the new cost func-

tions, i.e. congestion plus tolls, are illustrated in Figure 5.7.

Figure 5.8 shows the evolution of drivers on routes when using the Simple Exper-
imentation dynamics. This simulation used an experimentation rate=0f0.25%.
When using this tolling scheme, the vehicles’ collective behavior approaches the re-
fined Nash equilibrium which now minimizes the total congestion experienced on the

network. The total congestion experienced on the network is now approximately 1500.

There are other tolling schemes that would have resulted in the desired allocation.
One approach is to assign an infinite cost to the middle road, which is equivalent to
removing it from the network. Under this scenario, the unique Nash equilibrium is for

half the vehicles to occupy the top route and half the bottom, which would minimize
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c(k) = k / 1000 +

(k-1) / 1000 c(k) =1

ck)=1 c(k) =k / 1000 +
o (k-1) / 1000

Figure 5.7: Braess’ Paradox: Congestion Game Setup with Tolls to Minimize Total Congestion

the total congestion on the network. Therefore, the existence of this extra road, even
though it has zero cost, resulted in the unique Nash equilibrium having a higher total

congestion. This is Braess’ Paradox [Bra68].

The advantage of the tolling scheme set forth in this chapter is that it gives a sys-
tematic method for influencing the Nash equilibria of any congestion game. We would
like to highlight that this tolling scheme only guarantees that the action profiles that
maximize the desired objective function are Nash equilibria of the new congestion
game with tolls. However, it does not guarantee the lack of suboptimal Nash equilib-
ria.

In many applications, players may not have access to their true utility, but do have
access to a noisy measurement of their utility. For example, in the traffic setting, this
noisy measurement could be the result of accidents or weather conditions. We will
revisit the original congestion game (without tolls) as illustrated in Figure 5.4. We will
now assume that a driver’s utility measurement takes on the form
Ui(a) == e(o(a) + 14,

red;

wherey; is a random variable with zero mean and variance of 0.1. We will assume that
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Figure 5.8: Braess’ Paradox: Evolution of Number of Vehicles on Each Road Using Simple
Experimentation Dynamics with Optimal Tolls

the noise is driver specific rather than road specific.

Figure 5.9 shows a comparison of the evolution of drivers on routes when using the
Simple and Sample Experimentation dynamics. The Simple Experimentation dynam-
ics simulation used an experimentation rate 0.25%. The Sample Experimentation
dynamics simulation used an exploration rate 0.25%, a tolerance levei = 0.002,
an exploration phase length = 500000, and inertiav = 0.85. As expected, the noisy
utility measurements influenced vehicle behavior more in the Simple Experimentation

dynamics than the Sample Experimentation dynamics.

5.5 Concluding Remarks and Future Work

We have introduced Safe Experimentation dynamics for identical interest games, Sim-

ple Experimentation dynamics for weakly acyclic games with noise-free utility mea-
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Figure 5.9: Braess’ Paradox: Comparison of Evolution of Number of Vehicles on Each Road
Using Simple Experimentation Dynamics and Sample Experimentation Dynamics (baseline)
with Noisy Utility Measurements

surements, and Sample Experimentation dynamics for weakly acyclic games with
noisy utility measurements. For all three settings, we have shown that for sufficiently
large times, the joint action taken by players will constitute a Nash equilibrium. Fur-
thermore, we have shown how to guarantee that a collective objective in a congestion
game is a (non-unique) Nash equilibrium.

Our motivation has been that in many engineered systems, the functional forms of
utility functions are not available, and so players must adjust their strategies through an
adaptive process using only payoff measurements. In the dynamic processes defined
here, there is no explicit cooperation or communication between players. One the one
hand, this lack of explicit coordination offers an element of robustness to a variety of
uncertainties in the strategy adjustment processes. Nonetheless, an interesting future
direction would be to investigate to what degree explicit coordination through limited

communications could be beneficial.
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5.6 Appendix to Chapter 5

5.6.1 Background on Resistance Trees

For a detailed review of the theory of resistance trees, please see [You93P'Let
denote the probability transition matrix for a finite state Markov chain over the state
spaceZ. Consider a “perturbed” process such that the size of the perturbations can
be indexed by a scalar> 0, and letP* be the associated transition probability ma-
trix. The process< is called aregular perturbed Markov process P¢ is ergodic

for all sufficiently smalle > 0 and P¢ approache#® at an exponentially smooth rate

[You93]. Specifically, the latter condition means thiat =’ € 7,

=p°

zz!

lim P¢

’
64>0+ zZz

and

. P,
P;,, > 0forsomee >0 = 0< lim —==

o
e—0t ET(Z_’ZI) < ’
for some nonnegative real numbgr: — 2’), which is called theesistanceof the

transitionz — 2. (Note in particular that i”°, > 0 thenr(z — 2’) = 0.)

Let the recurrence classes Bf be denoted by, F,, ..., Ex. For each pair of
distinct recurrence classds and E;, i # j, anij-path is defined to be a sequence
of distinct states = (1 — 22 — ... — z,) suchthat;; € E;, andz, € E,. The
resistance of this path is the sum of the resistances of its edges, tHabis; r(z; —

23) +1r(2ze = 23) + ... + r(2p-1 — 2,). Letp;; = minr(¢) be the least resistance
over allzj-paths(. Note thatp;; must be positive for all distinatand;, because there

exists no path of zero resistance between distinct recurrence classes.

Now construct a complete directed graph withvertices, one for each recurrence
class. The vertex corresponding to clésswill be called;. The weight on the directed

edgel — jisp;;. Atree, T, rooted at vertey, or j-tree, is a set oV — 1 directed edges
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such that, from every vertex different fromthere is a unique directed path in the tree
to j. The resistance of a rooted trgg, is the sum of the resistancgg on theN — 1
edges that compose it. Te®chastic potentialy;, of the recurrence clags; is defined

to be the minimum resistance over all trees rooted a&he following theorem gives a

simple criterion for determining the stochastically stable states ([You93], Theorem 4).

Theorem 5.6.1.Let P¢ be a regular perturbed Markov process, and for each 0 let

1€ be the unique stationary distribution . Thenlim, ., x4 exists and the limiting
distribution .° is a stationary distribution of?°. The stochastically stable states (i.e.,
the support of:°) are precisely those states contained in the recurrence classes with

minimum stochastic potential.
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CHAPTER 6

Connections Between Cooperative Control and

Potential Games

In this chapter, we present a view of cooperative control using the language of learn-
ing in games. We review the game theoretic concepts of potential games and weakly
acyclic games and demonstrate how several cooperative control problems such as con-
sensus and dynamic sensor coverage can be formulated in these settings. Motivated
by this connection, we build upon game theoretic concepts to better accommodate a
broader class of cooperative control problems. In particular, we extend existing learn-
ing algorithms to accommodate restricted action sets caused by limitations in agent
capabilities. Furthermore, we also introduce a new class of games, called sometimes
weakly acyclic games, for time-varying objective functions and action sets, and pro-
vide distributed algorithms for convergence to an equilibrium. Lastly, we illustrate the
potential benefits of this connection on several cooperative control problems. For the
consensus problem, we demonstrate that consensus can be reached even in an environ-
ment with non-convex obstructions. For the functional consensus problem, we demon-
strate an approach that will allow agents to reach consensus on a specific consensus
point. For the dynamic sensor coverage problem, we demonstrate how autonomous
sensors can distribute themselves using only local information in such a way as to
maximize the probability of detecting an event over a given mission space. Lastly,

we demonstrate how the popular mathematical game of Sudoku can be modeled as a
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potential game and solved using the learning algorithms discussed in this chapter.

6.1 Introduction

Our goals in this chapter are to establish a relationship between cooperative control
problems, such as the consensus problem, and game theoretic methods, and to demon-
strate the effectiveness of utilizing game theoretic approaches for controlling multi-
agent systems. The results presented here are of independent interest in terms of their
applicability to a large class of games. However, we will focus on the consensus prob-

lem as the main illustration of the approach.

We consider a discrete time version of the consensus problem initiated in [TBA86]
in which a group of player® = {Py,...,P,} seek to come to an agreement, or
consensus, upon a common scalar valmerepeatedly interacting with one another.

By reaching consensus, we mean converging to the agreement space characterized by
ap = Gz =+ = Gp,

wherea; is referred to as the state of playBy. Several papers study different in-
teraction models and analyze the conditions under whether these interactions lead to

consensus [BHOO05, XB04, XB05, OM03, OFM07, Mor04, JLMO03, KBS06].

A well studied protocol, referred to here as the “consensus algorithm”, can be
described as follows. At each time steg {0,1,...}, each playefP; is allowed to
interact with a group of other players, who are referred to aadiighborsof player?;
and denoted a®/;(¢). During an interaction, each play®¥ is informed of the current
(or possibly delayed) state of all his neighbors. Plaiethen updates his state by

forming a convex combination of his state along with the state of all his neighbors.

1The forthcoming results will hold for multi-dimensional consensus as well.
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The consensus algorithm takes on the general form
a;(t+1) = Z wij(t)a;(t), (6.1)
P;EN;(t)
wherew;;(t) is the relative weight that playé?; places on the state of play®y; at
timet. The interaction topology is described in terms of a time varying directed graph
G(V, E(t)) with the set of node§” = P and the set of edgds(t) C P x P attimet.

The set of edges is directly related to the neighbor sets as folldsP;) € E(t) if
and only if P; € N;(t). We will refer toG(V, E(t)) as the interaction graph at time

There has been extensive research centered on understanding the conditions nec-
essary for guaranteeing the convergence of all states lin@. . a;(t) — a*, for
all playersP;, € P. The convergence properties of the consensus algorithm have
been studied under several interaction models encompassing delays in information ex-

change, connectivity issues, varying topologies and noisy measurements.

Surprisingly, there has been relatively little research that links cooperative control
problems to a branch of the learning in games literature [You98] that emphasizes coor-
dination games. The goal of this chapter is to better establish this link and to develop

new algorithms for broader classes of cooperative control problems as well as games.

In Section 6.2 we establish a connection between cooperative control problems
and potential games. In Section 6.3 we model the consensus problem as a potential
game and present suitable learning algorithms that guarantee that players will come
to a consensus even in an environment filled with non-convex obstructions. In Sec-
tion 6.4 we introduce a new class of games called sometimes weakly acyclic games,
which generalize potential games, and present simple learning dynamics with desir-
able convergence properties. In Section 6.5 we show that the consensus problem can
be modeled as a sometimes weakly acyclic game. In Section 6.6 we develop learning

algorithms that can accommodate group based decisions. In Section 6.7 we model the
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functional consensus problem as a potential game with group based decisions. In Sec-
tion 6.8 we illustrate the connection between cooperative control and potential games
on the dynamic sensor allocation problem and also the mathematical puzzle of Sudoku.

Section 6.9 presents some final remarks.

6.2 Cooperative Control Problems and Potential Games

Cooperative control problems entail several autonomous players seeking to collec-
tively accomplish a global objective. The consensus problem is one example of a
cooperative control problem, where the global objective is for all players to reach con-
sensus upon a given state. The challenge in cooperative control problems is designing
local control laws and/or local objective functions for each of the individual players so

that collectively they accomplish the desired global objective.

One approach for cooperative control problems is to assign each individual player
a fixed protocol or policy. This protocol specifies precisely what each player should
do under any environmental condition. The consensus algorithm set forth in Equation
(6.1) is an example of such a policy based approach. One challenge in this approach
is to incorporate dynamic or evolving constraints on player policies. For example,
suppose a global planner desires a group of autonomous players to physically con-
verge to a central location in an environment containing obstructions. The standard
consensus algorithm may not be applicable to this problem since limitations in control
capabilities caused by environmental obstructions are not considered. Variations of the
consensus algorithm could possibly be designed to accommodate obstructions, but the

analysis and control design would be more challenging.

An alternative game theoreti@pproach to cooperative control problems, and our

main interest in this chapter, is to assign each individual player a local objective func-
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tion. In this setting, each playép;, € P is assigned an action set; and a local
objective function; : A — R, whereA = Hpiep A; is the set of joint actions. An
example of an objective function that will be studied in the following section is

U(ai,a—) = — Z |a; — a;]l,

P;EN;

where|| - || is any norm,N; is the neighbor set of playé®;, and
a_; = {ay,...,a;—;,a;41,...,a,} denotes the collection of actions of players other
than playerP;. With this notation, we will frequently express the joint actioras
(@i, a_;).

We are interested in analyzing the long term behavior when players are repeatedly
allowed to interact with one another in a competitive environment where each player
seeks to selfishly maximize his own objective function. These interactions will be
modeled as a repeated game, in which a one stage game is repeated each tirae step
{0,1,2,...}. Atevery time steg > 0, each playefP; € P selects an action; € A,
seeking to myopically maximize his expected utility. Since a player’s utility may be
adversely affected by the actions of other players, the player can use his observations
from the games played at timé8, 1,...,¢ — 1} to develop a behavioral model of the

other players.

At any timet > 0, the learning dynamics specify how any plag&iprocesses past
observations from the interactions at tir{@s1, ... ,¢ — 1} to generate a model of the
behavior of the other players. The learning dynamics that will be used throughout this
chapter are referred to as single stage memory dynamics which have a structural form
similar to that of the consensus algorithm; namely, that the decision of any [Fayer
at timet is made using only observations from the game played at timd. The
learning dynamics need not be restricted to single stage memory. A follow up study
could analyze the benefit of using additional memory in learning dynamics for the

consensus problem.
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The challenge of the control design for a game theoretic approach lies in design-
ing the objective functionand the learning dynamics such that, when players self-
ishly pursue their own objectives, they also collectively accomplish the objective of
the global planner. Suppose that the objective of the global planner is captured by a
potential functionp : A — R. In any successful multi-agent system each player’s
objective function should be appropriately “aligned” with the objective of the global
planner. This notion of utility alignment in multi-agent systems has a strong connec-
tion to potential games [MS96b]. For convenience, we will restate the definition of

potential games originally defined in Section 2.3.2.

Definition 6.2.1 (Potential Games) Player action setg.4,}"_; together with player
objective functiongU, : A — R}"_, constitute gootential gamef, for some potential

function¢ : A — R,
Ui(ai,a_;) — Ui(aj, a_;) = ¢(ay, a_;) — ¢(aj, a_s),

for every playerP; € P, for everya;, a] € A;, and for everyu_; € x;.A;.

[ Riet)

A potential game, as defined above, requires perfect alignment between the global
objective and the players’ local objective functions, meaning that if a player unilat-
erally changed his action, the change in his objective function would be equal to the
change in the potential function. There are weaker notions of potential games, called
weakly acyclic games, which will be discussed later. The connection between co-
operative control problems and potential games is important because learning algo-
rithms for potential games have been studied extensively in the game theory literature
[MS96a, MS96b, MS97, MASO7b, MASO05]. Accordingly, if it is shown that a co-
operative control problem can be modeled as a potential game, established learning
algorithms with guaranteed asymptotic results could be used to tackle the cooperative

control problem at hand.
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In the following section we will illustrate this opportunity by showing that the
consensus problem can be modeled as a potential game by defining players’ utilities

appropriately.

6.3 Consensus Modeled as a Potential Game

In this section we will formulate the consensus problem as a potential game. First,
we establish a global objective function that captures the notion of consensus. Next,
we show that local objective functions can be assigned to each player so that the re-
sulting game is in fact a potential game. Finally, we present a learning algorithm that

guarantees consensus even in an environment containing non-convex obstructions.

It turns out that the potential game formulation of the consensus problem discussed
in this section requires the interaction graph to be time-invariant and undirected. In
Section 6.5 we relax these requirements by formulating the consensus problem as a

sometimes weakly acyclic game.

6.3.1 Setup: Consensus Problem with a Time-Invariant and Undirected Inter-

action Graph

Consider a consensus problem wittplayer setP where each playeP; € P has a
finite action setA4;. A player’s action set could represent the finite set of locations that

a player could select.

We will consider the following potential function for the consensus problem

pla):=—> 3 M (6.2)

P;€P P;EN;

whereN; C P is playerP;’s time-invariant neighbor set. In the case where the interac-
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tion graph induced by the neighbor séfs;} , is connectet] the potential function
above achieves the value of 0 if and only if the action praofile A constitutes a
consensus.e.,

dla) =0 a1 == a,.

The goal is to assign each player an objective function that it is perfectly aligned
with the global objective in (6.2). One approach would be to assign each player the

following objective function:

This assignment would require each player to observe the decision of all players in
order to evaluate his payoff for a particular action choice, which may be infeasible. An
alternative approach would be to assign each player an objective function that captures
the player’s marginal contribution to the potential function. For the consensus problem,
this translates to each player being assigned the objective function

Ulaiaz) = — > llai —aj]. (6.3)

P;EN;

Now, each player’s objective function @ly dependent on the actions of his neigh-
bors. An objective function of this form is referred to as Wonderful Life Utility; see
[AMSO07, WT99]. Itis known that assigning each agent a Wonderful Life Utility leads
to a potential game [AMS07, WT99]; however, we will explicitly show this for the

consensus problem in the following claim.

Claim 6.3.1. Player objective functions (6.3) constitute a potential game with the po-
tential function (6.2) provided that the time-invariant interaction graph induced by the

neighbor setg \V;}!"_, is undirected, i.e.,

PjENZ‘@PiENj.

2A graph is connected if there exists a path from any node to any other node.
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Proof. Since the interaction graph is time-invariant and undirected, the potential func-

tion can be expressed as

da)=—> lla—al-> Y M

PjeN; Pi#Pi PLEN;\Pi

The change in objective of play&:; by switching from actiom; to actiona? provided

that all other players collectively play ; is

Ui(ai,a—i) = Uiaj,a—) = > —llaf — a;l| + laf — a;],
P;eEN;

= ¢(a?,a_;) — d(a},a_;).

O

Note that the above claim does not require the interaction graph to be connected. There
may exist other potential functions and subsequent player objective functions that can
accommodate more general setups. For a detailed discussion on possible player objec-

tive functions derived from a given potential function, see [AMSO07].

We now assume that the above game is repeatedly played at discrete time steps
t €{0,1,2,...}. We are interested in determining the limiting behavior of the players,
in particular whether or not they reach a consensus, under various interaction models.
Since the consensus problem is modeled as a potential game, there are a large num-
ber of learning algorithms available with guaranteed results [You98, You05, AMSO07,
MS96b, MASO07b, MASO05]. Most of the learning algorithms for potential games guar-

antee that the player behavior converges to a Nash equilibrium.

It is straightforward to see that any consensus point is a Nash equilibrium of the

game characterized by the player objective functions (6.3). This is because a consensus
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point maximizes the potential function as well as the player objective functions (6.3).
However, the converse statement is not true. letlenote the set of Nash equilibria
and.A° denote the set of consensus points. We know.ttfat .A* where the inclusion

can be proper. In other words, a Nash equilibrium, gay¥ A*, can be suboptimal,

i.e.,¢(a*) < 0, and hence fail to be a consensus point.

6.3.2 A Learning Algorithm for Potential Games with Suboptimal Nash Equi-

libria

Before stating the learning algorithm, we start with some notation. Let the strategy
of playerP; at timet be denoted by the probability distributipnt) € A(A;) where
A(A;) denotes the set of probability distributions over the 4gtUsing this strategy,

playerP; randomly selects an action frod; at timet according tay;(t).

Consider the following learning algorithm known as spatial adaptive play (SAP)
[You98]. At each timet > 0, one playerP; € P is randomly chosen (with equal
probability for each player) and allowed to update his action. All other players must
repeat their actions, i.ea_;(t) = a_;(t — 1). At time ¢, the updating playe®;
randomly selects an action fro; according to his strategy () € A(A;) where the
a;—th componenp(t) of his strategy is given as

exp{3 Ui(ai,a—i(t — 1))}

Yaea expiB Ui(as, ai(t — 1))}

for some exploration parametér> 0. The constant determines how likely playé&p;

pi(t) =

is to select a suboptimal action. #f= 0, playerP; will select any actiom; € A; with
equal probability. As? — oo, playerP; will select an action from his best response
set

{a; € A; : Us(ag,a_i(t — 1)) = max Uj(a},a_;(t — 1))}

a€A;

with arbitrarily high probability.
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In a repeated potential game in which all players adhere to SAP, the stationary
distributiony € A(.A) of the joint action profiles is given in [You98] as

~ exp{8d(a)}
ula) = > acacxp{f o(a)}

One can interpret the stationary distributioras follows: for sufficiently large times

t > 0, u(a) equals the probability that(t) = a. As 5 T oo, all the weight of the
stationary distribution: is on the joint actions that maximize the potential function.

In the potential game formulation of the consensus problem, the joint actions that
maximize the potential function (6.2) are precisely the consensus points provided that
the interaction graph is connected. Therefore, if all players update their actions using
the learning algorithm SAP with sufficiently large then the players will reach a

consensus asymptotically with arbitrarily high probability.

6.3.3 A Learning Algorithm for Potential Games with Suboptimal Nash Equi-

libria and Restricted Action Sets

One issue with the applicability of the learning algorithm SAP for the consensus prob-
lem is that it permits any player to select any action in his action set. Because of player
mobility limitations, this may not be possible. For example, a player may only be able
to move to a position within a fixed radius of his current position. Therefore, we seek
to modify SAP by conditioning a player’s action set on his previous actiona(zet1)

be the joint action at time— 1. With restricted action sets, the set of actions available
to playerP; at timet is a function of his action at time— 1 and will be denoted as
R;i(a;(t — 1)) C A;. We will adopt the convention that; € R;(a;) for any action

a; € A;, i.e., aplayer is always allowed to stay with his previous action.

We will introduce a variant of SAP called binary Restrictive Spatial Adaptive Play
(RSAP) to accommodate the notion of restricted action sets. RSAP can be described

as follows: At each time step> 0, one playefP; € P is randomly chosen (with equal

120



probability for each player) and allowed to update his action. All other players must
repeat their actions, i.e._;(t) = a_;(t — 1). Attime ¢, the updating playeP; selects
one trial actioni; randomly from his allowable sek;(a;(t — 1)) with the following
probability:

o Prla; = a] = & foranya; € Ri(a;i(t — 1)) \ ai(t — 1),

o Pria; =a,(t — 1) =1 — Fulal- DL

N;

where N; denotes the maximum number of actions in any restricted action set for

playerP;, i.e., N; := max,, 4, |Ri(a;)|. After playerP; selects a trial action;, he

chooses his action at tinteas follows:
exp{ Ui(ai, a_(t — 1))}
exp{3 Ui(@i,a—i(t — 1))} + exp{B U(a(t — 1))}’

exp{ Ui(a(t — 1))}
exp{ 3 Ui(as, a_i(t — 1))} +exp{f Ui(a(t — 1))}’

where > 0 is an exploration parameter. Note thatjfis selected as;(t — 1) then

Pria(t) =a;)] =

Pria;(t) =a;(t —1)] =

We make the following assumptions regarding the restricted action sets.

Assumption 6.3.1 (Reversibility).For any playerP; € P and any action pait}, a? €
Ai,

af € Ri(ag) & a} € Ri(a?).

Assumption 6.3.2 (Feasibility). For any playerP; € P and any action paiu?, a? €

Aj;, there exists a sequence of actia§s— a! — --- — af satisfyinga? € R;(a*™)
forall k € {1,2,...,n}.
Theorem 6.3.1.Consider a finite:-player potential game with potential functigi-).

If the restricted action sets satisfy Assumptions 6.3.1 and 6.3.2, then RSAP induces
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a Markov process over the state spadewhere the unique stationary distribution
w € A(A) is given as

exp{f ¢(a)}
ZaeA exp{ ¢(a)}

p(a) = , foranya € A. (6.4)

Proof. The proof follows along the lines of the proof of Theorem 6.2 in [You98]. By
Assumptions 6.3.1 and 6.3.2 we know that the Markov process induced by RSAP is
irreducible and aperiodic; therefore, the process has a unique stationary distribution.
Below, we show that this unique distribution must be (6.4) by verifying that the distri-

bution (6.4) satisfies the detailed balanced equations
pi(a) Pay = 41(b) Pra,
foranya,b € A, where
Py :=Prla(t) =bla(t — 1) =q].

Note that the only nontrivial case is the one wheandb differ by exactly one player
P;, thatis,a_; = b_; buta; # b; wherea; € R;(b;) which also implies that; € R;(a;).
Since playefP; has probabilityl /n of being chosen in any given period and any trial
actiond; € R;(a;), b; # a;, has probability ofi /N; of being chosen, it follows that

exp{8 ¢(a)} exp{ U;(b)} ]
>eaexp{f o(2)} exp{f Ui(a)} +exp{B Us(b)} |

pua) Py = x| (1/n)(1/N;)
| ||

Letting

B 1 (1/m)(1/Ny)
o (ZzeA exp{/J ¢(Z>}> g (exp{ﬁ Ui(a)} + exp{f Ui(b)}>’
we obtain
p(a)Pap = Aexp{Bd(a) + BU;(b) }.
SinceU;(b) — U;(a) = ¢(b) — ¢(a), we have

p(a)Pop = Nexp{B¢(b) + pUi(a)},
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which leads us to

]

Note that if all players adhere to the learning dynamics RSAP in a consensus prob-
lem where the interaction graph is time-invariant and undirected, the restricted action
sets satisfy Assumptions 6.3.1 and 6.3.2, and players are assigned the utilities (6.3),
then, at sufficiently large timefs the players’ collective behavior will maximize the
potential function (6.2) with arbitrarily high probability provided thiats sufficiently
large. Furthermore, if the interaction graph is connected and consensus is possible,
meaning(A; N A, N - - - N A,) # 0, then, at sufficiently large times > 0, the
players’ actions will constitute a consensus with arbitrarily high probability even in an

environment filled with non-convex obstructions.

6.3.4 Example: Consensus in an Environment with Non-convex Obstructions

Consider the 2-D consensus problem with player®et {P;, P, P3,P;}. Each
playerP; has an action sed; = {1,2,...,10} x {1,2,..,10} as illustrated in Figure

6.1. The arrows represent the time-invariant and undirected edges of the connected
interaction graph. The restricted action sets are highlighted for pl@easndP,. At

any given time, any player can have at most 9 possible actions; theréfore 9 for

all playersp; € P.

We simulated RSAP on the consensus problem with the interaction graph, envi-
ronmental obstruction, and the initial conditions shown in Figure 6.1. We increase the
exploration parametet ast/200 during player interactions. The complete action path

of all players reaching a consensus is shown in Figure 6.2.
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Figure 6.1: Example: Setup of a Consensus Problem with Restricted Action Sets and
Non-convex Environmental Obstructions.

6.4 Weakly Acyclic and Sometimes Weakly Acyclic Games

In potential games, players’ objective functions must be perfectly aligned with the po-
tential of the game. In the potential game formulation of the consensus problem, this
alignment condition required that the interaction graph be time-invariant and undi-
rected. In this section we will seek to relax this alignment requirement by allowing
player objective functions to be “somewhat” aligned with the potential of the game.
We will review a weaker form of potential games called weakly acyclic games and
introduce a new class of games calkametimes weakly acyclic gamé§e will also
present simple learning dynamics that guarantee convergenceivassal Nash equi-

librium, to be defined later, in any sometimes weakly acyclic game.
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Figure 6.2: Example: Evolution of the Action Path in the Consensus Problem with Restricted
Action Sets and Non-convex Environmental Obstructions.

6.4.1 Weakly Acyclic Games

Recall the definition of a weakly acyclic game from Section 2.3.4. A game is weakly
acyclic if, for anya € A, there exists a better reply path startingzand ending at

some Nash equilibrium [You98, YouO05].

The above definition does not clearly identify the similarities between potential
games and weakly acyclic games. Furthermore, using this definition to show that a
given games, i.e., the players, objective functions, and action sets, is weakly acyclic
would be problematic. With these issues in mind, we will now derive an equivalent

definition for weakly acyclic games that utilizes potential functions.

Lemma 6.4.1. A game is weakly acyclic if and only if there exists a potential function

¢ : A — R such that for any actiom € A that is not a Nash equilibrium, there
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exists a playefP; € P with an actiona; € A; such that/;(a},a_;) > U;(a;,a_;) and

o(aj, a—;) > ¢lai, a—;).

Proof. (<) Select any action® € A. If a° is not a Nash equilibrium, there exists a
playerP; € P with an actiona; € A; such that/;(a') > U;(a°) andé(al) > ¢(a®)
wherea! = (af,d’,).

Repeat this process and construct a pathi!, ..., o™ until it can no longer be
extended. Note first that such a path cannot cycle back on itself, begasisgrictly
increasing along the path. Singkis finite, the path cannot be extended indefinitely.

Hence, the last element in this path must be a Nash equilibrium.

(=) We will construct a potential function : A — R recursively. Select any
actiona® € A. Since the game is weakly acyclic, there exists a better reply path
a’,al, ... a™ wherea" is a Nash equilibrium. Lel® = {a°, a!, ..., a"}. Define the

(finite) potential functiony over the setd® satisfying the following conditions:
¢(a’) < da') < -+ < d(a").

Now select any action® € A\ .A°. There exists a better reply path a', ..., a™
wherea™ is a Nash equilibrium. Le! = {a° a',...,a™}. If A' N A% = () then

define the potential function over the setd! satisfying the following conditions:

P(a) < g(a’) <--- < g(am).

If A'NA° #£ (), then lete* = min{k € {1,2,...,m} : @&* € A°}. Define the potential
function ¢ over the truncated (redefined) sét = {a°, a', ..., a* ~1} satisfying the
following conditions:

¢(a’) < o(a') <--- < ¢(a").

Now select any actiof® € A \ (A° U A') and repeat until no such action exists.
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The construction of the potential functignguarantees that for any actiane A
that is not a Nash equilibrium, there exists a plaperc P with an actiona € A;

such than<a?, CL,Z') > UZ'<CL,L', a,i) andgb(af, a,i) > (b(CL,L', a,i). O

6.4.2 Learning Dynamics for Weakly Acyclic Games

We will consider thebetter reply with inertia dynamic®r weakly acyclic games an-
alyzed in [You93, YouO5]. Before stating the learning dynamics, we define a player’s

strict better reply setor any action profile:® € A as
Bi(a®) := {a; € A; : Uj(a;,a’,) > Us(a")}.

The better reply with inertia dynamics can be described as follows. At each time
t > 0, each playef; presumes that all other players will continue to play their previ-
ous actions:_;(t — 1). Under this presumption, each play@r € P selects an action

according to the following strategy at tinae

Bi(a(t—1)=0 = a(t)=a(t—1),
Pr[a;(t) = a;(t — 1)] = a(t),

% 11—«
Pra,(t) = o] = aals,

for any actiom: € B;(a(t—1)) wherea(t) € (0, 1) is referred to as the player’s inertia
attimet. According to these rules, play®r will stay with the previous actioa; (t—1)
with probability«(t) even when there is a perceived opportunity for improvement. We

make the following standing assumption on the players’ willingness to optimize.

Assumption 6.4.1.There exist constantsand such that for all time > 0 and for
all playersP; € P,

O<e<at)y<e<l.

This assumption implies that players are always willing to optimize with some

nonzero inertia.
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If all players adhere to the better reply with inertia dynamics satisfying Assump-
tion 6.4.1, then the joint action profiles will converge to a Nash equilibrium almost

surely in any weakly acyclic game [You93, YouO5].

6.4.3 Sometimes Weakly Acyclic Games

In the potential game formulation of the consensus problem, each player was assigned
a time-invariant objective function of the form (6.3). However, in the case of a time-
varying interaction topology, we would like to allow player objective functions to be
time-varying. In this framework, each play®: is now assigned a local objective
functionU; : A x {0,1,2,...} — R. We will denote the objective function of player

P, attimet asU;(a(t),t) wherea(t) is the action profile at time

We will call an action profilez* auniversal Nash equilibriunf

Ui(a*,t) = max U;(a;,a”;, t)

a;EA; -

for all timest > 0.

We will call a gamesometimes weakly acyclitthere exists a potential function
¢ : A — R and a finite time constarit such that for any time&, > 0 and any action
profile a° that isnot a universal Nash equilibrium, there exists a titne [to, to + 711,
a playerP; € P, and an actiom; € A; such thatU;(a},a’;,t;) > U;(a® ¢;) and
¢(af,al;) > ¢(a’).

Note that a sometimes weakly acyclic game has at least one universal Nash equi-

librium: namely, an action profile that maximizes the potential funcgioi

6.4.4 Learning Dynamics for Sometimes Weakly Acyclic Games

We will consider the better reply with inertia dynamics for games involving time-

varying objective functions. Before stating the learning dynamics, we redefine a player’s
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strict better reply setor any action profile:® € A and timet > 0 as

BZ'<CL0,Z€> = {ai € ./41 : Ui(ai,ao t) > Ui(ao,t)}.

_7;7

The better reply with inertia dynamics can be described as follows. At each tinte
each playerP; presumes that all other players will continue to play their previous
actionsa_;(t — 1). Under this presumption, each playBr € P selects an action

according to the following strategy at tinne

Pra;(t) = a;(t — 1)] = a(t),

o (—a®)
Prlai(t) = o}] = maro

Bila(t —1),t) £ 0 =

for any actioru} € B;(a(t — 1),t) wherea(t) € (0, 1) is the player’s inertia at time

Theorem 6.4.1.Consider am-player sometimes weakly acyclic game with finite ac-
tion sets. If all players adhere to the better reply with inertia dynamics satisfying
Assumption 6.4.1, then the joint action profiles will converge to a universal Nash equi-

librium almost surely.

Proof. Let ¢ : A — R andT be the potential function and time constant for the
sometimes weakly acyclic game. L&f,) = a° be the action profile at time,. If

a® is a universal Nash equilibrium, therit) = o° for all timest > t, and we are
done. Otherwise, there exists a timesatisfying(t, + 7') > t; > t,, a playerP; € P,
and an actiom} € A; such that;(a},a’,,t;) > U;(a®;t;) and¢(af,a’;) > ¢(a’).
Because of players' inertia, the actioh= (a}, a°,) will be played at time; with at

least probabilitye™—* (1‘;? el

One can repeat this argument to show that for any tigne- 0 and any action

profile a(ty) there exists a joint actio* such that

Prla(t) =a",Vt > t"] > €
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where

6.5 Consensus Modeled as a Sometimes Weakly Acyclic Game

Two main problems arose in the potential game formulation of the consensus problem.
The first problem was that a Nash equilibrium was not necessarily a consensus point
even when the interaction graph was connected and the environment was obstruction
free. Therefore, we needed to employ a stochastic learning algorithm like SAP or
RSAP to guarantee that the collective behavior of the players would be a consensus
point with arbitrarily high probability. SAP or RSAP led to consensus by introducing
noise into the decision making process, meaning that a player would occasionally make
a suboptimal choice. The second problem was that the interaction graph needed to be

time-invariant, undirected, and connected in order to guarantee consensus.

In this section, we will illustrate that by modeling the consensus problem as a
sometimes weakly acyclic game one can effectively alleviate both problems. For
brevity, we will show that the 1-dimensional consensus problem with appropriately
designed player objective functions is a sometimes weakly acyclic game. However,

one can easily extend this to the multi-dimensional case.
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6.5.1 Setup: Consensus Problem with a Time-Varying and Directed Interaction

Graph

Consider a consensus problem with-player setP and a time-varying and directed
interaction graph. Each player has a finite action.4etC R and without loss of
generalities, we will assume that; = A, = --- = A,. Each playerP; € P is
assigned an objective functidiy : A x {0,1,2,...} — R. We make the following

standard assumption on players’ neighbor sets.

Assumption 6.5.1. Players’ neighbor sets satisfy

P; € Ny(t), VP, € P, t > 0.

Before introducing the player objective functions, we define the following measure
D(a,P") = max (a; —ay), (6.5)

Pi ,Pj eP’

whereP’ C P, and extreme player sets

Pa) = {P,eP:a;= glg%aj},
Pl(a) = {P;eP:a;= %)né% ajt,
n(a) = min{|P"(a)],[P(a)]}.

We also define the constaiht > 0 as follows. For any:!, a> € A and any player sets

P, P? C P suchthatD(al, P!) # D(a?, P?), the following inequality is satisfied:
|D(a', P') — D(a®, P?)| > da.
Consider the following potential function: A — R

¢(a) = —D(a,P) + (1 — n(a)/n). (6.6)
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Note that the potential function is a non-positive function that achieves the value of
0 if and only if the action profile constitutes a consensus. Furthermore, note that the

potential function is independent of the interaction topology.

Rather than specifying a particular objective functions as in (6.3), we will introduce
a class of admissible objective functions. To that end, we define the ssdstinable

actionsfor playerP; at timet given any action profile® € A as

Si(a®t) :={a; € A;: max a) >a; > min a}}.
PjENi(t) PkENi(t)

Note that
a; € Si(a®,t) = D(a;,a’;, Ni(t)) < D(a’, Nys(t)).
We will define a general class mdasonable objective function&n objective function

for playerP; is called a reasonable objective function if, for any titne 0, and any

action profilea € A, the better response set satisfies the following two conditions:
1. Bi(a,t) C {S;i(a,t), 0},
2. |Si(a,t)| > 1 = Bi(a,t) # 0.
Roughly speaking, these conditions ensure that a player will not value moving further

away from his belief about the location of his neighbors.

We will now relax our requirements on the connectivity and time-invariance of the
interaction graph in the consensus problem. A common assumption on the interaction

graph is connectedness over intervals.

Assumption 6.5.2 (Connectedness Over Intervals)There exists a constafit > 0
such that for any time > 0, the interaction graph with nodeB and edgest =
E(t)u---UE(t+T)is connected.

Claim 6.5.1. Reasonable objective functions introduced above constitute a sometimes

weakly acyclic game with the potential function (6.6) provided that the interaction
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graph satisfies Assumption 6.5.2. Furthermore, every universal Nash equilibrium con-

stitutes consensus.

Proof. It is easy to see that any consensus point is a universal Nash equilibrium. We
will show that if an action profile is not a consensus point, then there exists a player
who can increase his objective function as well as the potential function at some time in
a fixed time window. This implies that every universal Nash equilibrium is a consensus

point and furthermore that the game is sometime weakly acyclic.

Let a® = a(ty) be any joint action that is not a consensus point. We will show
that for some time; € [to,to + T] there exists a playeP; € P with an action
a; € A; such thatU;(a},a’;,t1) > U;(a® t1) and¢(al,a’;) > ¢(a’). To see this
let P* be the extreme player set with the least number of playersfes= P4(a°)
if |Pu(a®)| < |PYa®)] or P* = Pl(a) if |P“(a®)| > |P(a®)|. Since the interaction
graph satisfies Assumption 6.5,2or somet; € [ty,t, + T there exists at least one

playerP; € P* with a neighborP; € N;(¢,) such thatP; ¢ P*. Therefore,
1S;(a®, t1)| > 1 = |B;(a® t,)| # 0.

Leta; € B;(a’ t;) and for notional convenience let = (a},a",). We know that

D(a',P) < D(a®, P). If D(a*,P) < D(a°, P), then

¢a') = —D(a',P)+da(l —n(a")/n),
> —D(a”,P)+ 64+ 641 —n(a')/n),
> —D(a%P)+ 64+ 6a(l — (n(a®) +n)/n),

= ¢(a").

3Note that assumption 6.5.2 is stronger than necessary for this proof.
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If D(a',P) = D(a° P), then

Therefores® is not a universal Nash equilibrium. ]

If all players adhere to the better reply with inertia dynamics in a consensus prob-
lem where the interaction graph satisfies Assumption 6.5.2 and the players are assigned
reasonable objective functions then the joint action profile will converge almost surely

to a consensus point.

These results can easily be extended to a multi-dimensional consensus problem

with bounded observational delays.

6.5.2 Extension to Multi-Dimensional Consensus

One can easily extend the arguments above to show thdt-dingensional consensus
game is a sometimes weakly acyclic game by generalizing the measure and choosing

the extreme player sets appropriately. An example of an acceptable measure is

n

D(a,P') := Z max_ d; (a; — a;).

Pi ,73]' eP’

whereP’ C P andd,, ds, ..., d, € R* is a set of measure vectors which span the com-
plete space oR". The termmaxp, p.cp dj (a; — a;) captures the maximum distance
between the action of any two agents in the nonempty playé?'setative to the mea-
sure directiond,. In the 1-D consensus problem, wheke= 1, the measure reverts
back to (6.5).
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The set of reasonable actions for plaggrat timet given the joint action profile

iS now

Si(a,t) = {a, € A; : Vk, dfa; > dra) > in dla;}.

(a,t) = {g; plax | dya; 2 dyai > min - dyas)

The consensus algorithm in (6.1) corresponds to a specific reasonable utility function.
In particular, the set of reasonable actions is the convex hull of the previous actions of
his neighbors, i.e.,

Si(a,t) = {CL; S -’4@ : ag = Z Wiy, Z Wi; = 1, Wij > OV,P] c Nl(t)}

PieN:(t) PjeN(t)

In the present setting, a player’s future action need not be in the convex hull of his

neighbors’ actions.

6.6 Group Based Decision Processes for Potential Games

In this section, we analyze the situation where players are allowed to collaborate with
a group of other players when making a decision. In particular we extend the results

of SAP to accommodate such a grouping structure.

6.6.1 Spatial Adaptive Play with Group Based Decisions

Consider a potential game with potential function. 4 — R. We will now introduce
a variant of SAP to accommodate group based decisions. At each tinte a group
of playersG C P is randomly chosen according to a fixed probability distribution
P € A(27) where2” denotes the set of subsets®f We will refer to P; as the
probability that group= will be chosen. We make the following assumption on the

group probability distribution.

Assumption 6.6.1 (Completeness)or any playerP; € P there exists a group: C
‘P such thatP; € G and Pg > 0.
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Once a group is selected, the group is unilaterally allowed to alter it’s collective
strategy. All players notin the group must repeat their actiongi.e:(t) = a_g(t—1),
whereag; is the action-tuple of all players in the grotf) anda_ is the action-tuple
of all players not in the group’. The group will be modeled as a single entity with a
group utility functionU; : A — R and a collective action set; = HP&G A;. At
time ¢, the updating groug- randomly selects a collective action frafy; according
to the collective strategy.(t) € A(Aq) where thean—th componenpgs (¢) of the

collective strategy is given as

exp{f U;(ag,a_g(t — 1))}
ZaGeAG exp{ Ui(ag,a—g(t — 1))}’

for some exploration parametgr> 0.

pe(t) =

We make the following assumption on the admissible group utility functions:

Assumption 6.6.2 (Group Utility Functions). Group utility functions must preserve
the potential structure of the game, meaning that for any gréug. P, collective

group actionsug, ag; € Ag, anda_g € [[p 4c A,

Uclag, a—g) — Ualag, a—g) = ¢(ag, a—a) — dlag, a_q).

In general, group utility functions need to preserve this condition. However, one
can always assign each group a utility that captures the group’s marginal contribution
to the potential function, i.e., a wonderful life utility as discussed in Section 6.3. This

utility assignment guarantees preservation of the potential structure of the game.

We will now show that the convergence properties of the learning algorithm SAP

still hold with group based decisions.

Theorem 6.6.1.Consider a finitex-player potential game with potential functigx-),

a group probability distributionP satisfying Assumption 6.6.1, and group utility func-
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tions satisfying Assumption 6.6.2. SAP with group based decisions induces a Markov
process over the state spagewhere the unique stationary distributipne A(A) is

given as

exp{3 ¢(a)}

i) = 5= exo(B 0@)

, foranya € A. (6.7)

Proof. The proof follows along the lines of the proof of Theorem 6.2 in [You98]. By
Assumption 6.6.1, the Markov process induced by SAP with group based decisions
is irreducible and aperiodic; therefore, the process has a unique stationary distribu-
tion. Below, we show that this unique distribution must be (6.7) by verifying that the

distribution (6.7) satisfies the detailed balanced equations
pi(a) Pay = p1(b) Pra,
foranya,b € A, where
Py :=Prla(t) =bla(t — 1) =q].

Note that there are now several ways to transition froandb when incorporating
group based decisions. L@{a, b) represent the group of players with different actions
in a andb, i.e.,

G(a,b) :=={P; € P:a; # b;}.
Let G(a,b) C 27 be the complete set of player groups for which the transition fsom
to b is possible, i.e.,

G(a,b) :={G € 2" : G(a,b) C G}.

Since a grougs € G(a, b) has probabilityP; of being chosen in any given period,

it follows that

) _ exp{f ¢(a)}
(@) Pap > caexp{p Cb(z)}} : LeGZ(a,b

exp{ﬁ UG(b)}
Y aceas {8 Uclag, a—g)} |

Pq
)
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Letting

Ao = (ZzeA ex;{ﬁ <Z5(Z)}> * (EEGGAG eXp{];GUG(aG’aG)})
we obtain

pa)Pu = Agexp{Bo(a) + BUq(b)}.

GeG(a,d)
SinceUg(b) — Ug(a) = ¢(b) — ¢(a) andG(a,b) = G(b, a), we have

p(a) Py = Z Ag exp{Bp(b) + BUg(a)},
GeG(ba)
which leads us to

(@) Pay = 1() Poa-

6.6.2 Restricted Spatial Adaptive Play with Group Based Decisions

Extending these results to accommodate restricted action sets is straightforward. Let
a(t — 1) be the action profile at time— 1. In this case, the restricted action set for
any groupG C P at timet will be Ag(t) =[], Ri(ai(t — 1)). We will state the

following theorem without proof to avoid redundancy.

Theorem 6.6.2.Consider a finite:-player potential game with potential functigx-),

a group probability distributionP satisfying Assumption 6.6.1, and group utility func-
tions satisfying Assumption 6.6.2. If the restricted action sets satisfy Assumptions 6.3.1
and 6.3.2, then RSAP induces a Markov process over the state gphadeere the
unique stationary distributiop, € A(.A) is given as

exp{f3 ¢(a)}
ZaeA exp{ ¢(a)}

p(a) =

, foranya € A.
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6.6.3 Constrained Action Sets

The learning algorithms SAP or RSAP with group based decisions induced a Markov
process over the entire sdt We will now consider the situation in which each group’s
action set is constrained, i.e4¢ C [[p . Ai- We will assume that the collective

action set of each group is time invariant.

Under this framework, the learning algorithms SAP or RSAP with group based
decisions induces a Markov process over the constrained set.4 which can be
characterized as follows: Le{0) be the initial actions of all players. if € A then
there exists a sequence of action profités) = a°,a’, ..., a" = a with the condition
that for allk € {1,2,...,n}, a* = (af, ,a"¢} ) for a groupG, C P, wherePg, > 0
anda’ék € Ag,. The unique stationary distributigne A(A) is given as

o) — el 0()

f A. .
S exp{F 0@} oranya € A (6.8)

6.7 Functional Consensus

In the consensus problem, as described in Section 6.3, the global objective was for all
agents to reach consensus. In this section, we will analyze the functional consensus
problem where the goal is for all players to reach a specific consensus point which is

typically dependent on the initial action of all players, i.e.,

tliglo a;(t) = f(a(0)), VP, € P,

wherea(0) € A is the initial action of all players and : A — R is the desired

function. An example of such a function for arplayer consensus problem is
1
fla(0)) = — > ai(0),
PP
for which the goal would be for all players to agree upon the average of the initial

actions of all players. We will refer to this specific functional consensus problem as
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average consensus.

The consensus algorithm of (6.1) achieves the objective of average consensus un-
der the condition that the interaction graph is connected and the associated weighting
matrix, @ = {wi;}p, p;ep, is doubly stochastic. A doubly stochastic matrix is any
matrix where all coefficients are nonnegative and all column sums and rows sums are

equal to 1. The consensus algorithm takes on the following matrix form
a(t+1) =Qa(t).
If Q2 is a doubly stochastic matrix, then for any timg 0,
17a(t +1) = 17Q a(t) = 17a(t).

Therefore, the sum of the actions of all players is invariant. Hence, if the players

achieve consensus, they must agree upon the average.

In order to achieve any form of functional consensus it is imperative that there exist
cooperation amongst the players. Players must agree on how to alter their action each
iteration. In the consensus algorithm, this cooperation is induced by the weighting ma-
trix which specifies precisely how a player should change his action each iteration. If
a player acted selfishly and unilaterally altered his action, the invariance of the desired

function would not be preserved.

6.7.1 Setup: Functional Consensus Problem with Group Based Decisions

Consider the consensus problem with a time invariant undirected interaction graph as
described in Section 6.3. To apply the learning algorithm SAP or RSAP with group
based decisions to the functional consensus problem one needs to define both the group

utility functions and the group selection process.
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6.7.2 Group Utility Function

Recall the potential function used for the consensus problem with a time invariant and
undirected interaction graph analyzed in Section 6.3,

¢la)=—(1/2) Y > llai —ayll.

P;cP P;EN;
We will assign any groug: C P the following local group utility function
Usla) = —(1/2) Y > Mlai—aill =D > llai—ayl. (6.9)
PieG P;eN;NG PieG P;eN;\G
An explanation for the1/2) is to avoid double counting since the interaction graph
is undirected. We will now show that this group utility function satisfies Assump-
tion 6.6.2. Before showing this, 1€{; denote the neighbors of group, i.e., N =
Up,cq Ni- The change in the potential function by switching frens (ag, a—¢) to

a = (ag,a_¢)is

o) —ola) = —(1/2) Y > (lai = ajll = llas — al)).

P;eP P;eEN;
For simplicity of notation leb;; = —(1/2)(||a; — a}|| — [|a; — a;]|). The change in the
potential can be expressed as
dla) —dla) = DY > by,
PP PjeN;
- >
'PiENG'PjENi
- Y Y Ay Y oas Y Y
'PiGG'P]’GNiﬂG 'PZ'EG'PJ'ENZ'\G PiENG\G’PjENZ’
- Y YAy Y as Y Yk
73¢€G73j6NiﬁG piGGPjENi\G 'PiENg\G'P]'ENiﬂG

Since the interaction graph is undirected, we know that

Do di= ) D

PZ'EG PjGNi\G 'P»L'ENg\G PjENiﬂG
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therefore, we can conclude that

dla)—da) = D (Y 6+2 > &)

P, eG PjENiﬂG 'PjENi\G
= Ug(a/) — Ug(a).

6.7.3 Group Selection Process and Action Constraints

Leta(t — 1) be the action profile at time— 1. At time ¢, one playerP; is randomly
(uniformly) chosen. Rather that updating his action unilaterally, pl®@ydirst selects
a group of playersy C P which we will assume is the neighbors of play@y, i.e.,
G = N,;. The group is assigned a group utility function as in (6.9) and a constrained

action setdg C [[p, o A

A central question is how can one constrain the group action set, using only loca-
tion information, such as to preserve the invariance of the desired fungttitmthis
case, we will restrict our attention only to functions where “local” preservation equates
to “global” preservation. This means that for each gréug P there exists a function

fo : Ac — R such that for any group action$,, a/, € Ag

falag) = falal) = flag,a ) = f(ag,a q), Ya_c e [] A

Pi¢G

Examples of functions that satisfy this constraint are

P, eG P, eP
fala) = maxa; = f(a) = max a;,
fela) = min a; f(a) = min a;

In each of these examples, the structural forny @nd f is equivalent. There may

exist alternative functions where this is not required.
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6.7.4 lllustration

We will illustrate this approach by solving the average consensus problem on the ex-
ample developed in Section 6.3.4. Given the initial configuration, all players should
agree upon the actiof¥, 5). We will solve this average consensus problem using the
learning algorithm binary RSAP with group based decisions. However, we will omit
the non-convex obstruction in this illustration. This omission is not necessary, but
rather convenient for not having to verify the properties of the constrained action set,

i.e., is consensus even possible, and Assumption 6.3.2 for the group action sets.

Figure 6.3 illustrates the evolution of each player’s actions using the stochastic
learning algorithm binary RSAP with group based decisions and an increasiogf-

ficient, 5(t) = 1.5 + ¢(2/1000).

6.8 lllustrative Examples

In this section we will develop two examples to further illustrate the wide range appli-
cability of the theory developed in this chapter. The first problem we will consider is
the dynamic sensor allocation problem. Lastly, we will demonstrate how this theory

can be used to solve a popular mathematical puzzle called Sudoku.

6.8.1 Dynamic Sensor Coverage Problem

We consider the dynamic sensor coverage problem described in [LC0O5c] and refer-
ences therein. The goal of the sensor coverage problem is to allocate a fixed number
of sensors across a given “mission space” to maximize the probability of detecting a

particular event.

We will divide the mission space into a finite set of sectors denotetl abhere
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Figure 6.3: Evolution of Each Player’s Action in the Average Consensus Problem

exists an events density function, or relative reward functit(s), defined overS. We
will assume thai?(s) > 0,Vs € Sand)_ 4 R(s) = 1. In the application of enemy

submarine trackingR(s) could be defined as the a priori probability that an enemy
submarine is situated in secter The mission space and associated reward function

that we will use in this section is illustrated in Figure 6.4.

There are a finite number of autonomous sensors denotél as{P, ..., P, }

allocated to the mission space. Each serfdocan position itself in any particular
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Reward Function over Mission Space

Reward

Figure 6.4: lllustration of Reward Function Over Mission Space

sector, i.e., the action set of sengyris A; = S. Furthermore, each sensor has limited
sensing and moving capabilities. If an event occurs in sactbe probability of sensor
P; detecting the event given his current locatigris denoted ag; (s, a;). Typically,
each sensor has a finite sensing radtysyhere the probability of detection obeys the
following:

|s — a;|| < r; < pi(s,a;) > 0.
An example of the sensing and moving capabilities of a particular sensor is illustrated

in Figure 6.5.
For a given joint action profile = {a4, ..., a, }, the joint probability of detecting
an event in sectof is given by

P(s,a)=1— ] 1 = pi(s,a)].

PP
In general a global planner would like the sensors to allocate themselves in such a

fashion as to maximize the following potential function

¢(a) =) R(s)P(s,a).

seS
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Figure 6.5: lllustration of Sensor Coverage and Range Restricted Action Sets of a Particular
Sensor

One way to accomplish such an objective is to assign each sensor a utility function
that is appropriately aligned with the global objective function as was the case in the

consensus problem. One option is to just assign each sensor the global objective, i.e.,

Under this scenario, we have a potential game and one could use a learning algorithm
like SAP or RSAP to guarantee that the sensors allocate themselves in a configuration
that maximizes the global objective. However, this particular choice of utility functions
require each sensor to be knowledgable of the locations and capabilities of all other
sensors. To avoid this requirement, we will assign each sensor a Wonderful Life Utility

[AMSO07, WT99]. The utility of sensoP; given any action profile € A is now
U’L(a) = ¢(aia a—i) - ¢(a?a a—i)a (610)

where the action? is defined as thewull action, which is equivalent to sens®
turning off all sensing capabilities. The tema?, a_;) captures the value of the al-

location of all sensors other than sengyr Therefore, the utility of sensdp; for an
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action profilea is defined as hisnarginal contribution to the global objective. This
means that a sensor now can evaluate his utility using only local information. Further-
more, the Wonderful Life Utility assignment preserves the potential game structure
[AMS07, WT99], meaning that SAP or RSAP can now be implemented with the sen-
sors using only local information to guarantee that the sensors allocate themselves in

a desirable configuration.

In the following simulation we have the mission space and reward function as illus-
trated in Figure 6.4. The mission spaceis- {1,2,...,100} x {1,2,...,100} and the
reward function satisfies___. R(s) = 1. We have 18 different autonomous sensors, 6
with a sensing radius of 6, 6 with a sensing radius of 12, and 6 with a sensing radius of
18. For simplicity, each sensor will have prefect sensing capabilities within its sensing
radius, namely for any sectersatisfying||s — a;|| < r;, thenp;(s, a;) = 1. Each sen-
sor is endowed with the WLU as expressed in (6.10). All 18 sensors originally started
at the location(1, 1) and each sensor has range restricted action sets as illustrated in
Figure 6.5. We ran the binary RSAP with= 0.6. Figure 6.6 illustrates a snapshot
of the sensors configuration at the final iteration. Figure 6.7 illustrates the evolution of

the potential function over the mission.

6.8.2 Sudoku

Our final illustration of the broad applicability of potential games is the well known

mathematical puzzle of Sudoku. An example of a Sudoku puzzle is shown in Fig-
ure 6.8. The objective is to fill a 9x9 grid so that each column, each row, and each
of the nine 3x3 boxes contains the digits from 1 to 9. The puzzle setter provides a

partially completed grid (blue boxes) which cannot be changed.

We will now illustrate that Sudoku is exactly a potential game when the players,

action sets, and utility functions are designed appropriately. We will view each of the
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Figure 6.8: lllustration of a Sudoku Puzzle

empty boxes as a self interested plaggrwith action set4; = {1,2,...,9}. Each
player will be assigned the utility function
Ui(a) = Z I{a; = a;} + Z Ha; = a;} + Z Ha; = a;},
P;ENR P;ENE P;ENB

whereN N€ and NP are the row, column and box neighbors of plaggand/{-}

is the usual indication function. An illustration of the neighbor sets of pl&jeis
highlighted in Figure 6.9, where the the green boxes indicate the row neighbors, red
boxes indicate the column neighbors, and yellow boxes indicate the box neighbors.
Note that in this framework, unlike with the consensus problem, each piaysmot

a neighbor of himself.

To simplify the notation, we define the following function: for each plaieand

for any player seP C P, let

ni(a, P) = Z Ha; = a;}.

P; €pP

This function computes the number of players with the same action as ftayethe
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Figure 6.9: lllustration of Neighbor Sets for a Player’s Utility Function in a Sudoku Puzzle

setP. Using this function, we will express the utility of playgy as
Ui(a) = ni(a, NJY) +ni(a, N) + ni(a, NP).

We will now show that the Sudoku game with utilities defined as above is a poten-

tial game with potential function

oa) = 1/23 Uia).

PieP

To simplify the analysis, we will break up the potential function as

¢(a) = ¢™(a) + ¢ (a) + ¢”(a),

where

¢"(a) = 1/2  ni(a, N[,

PP

¢“(a) = 1/2)  ni(a,Nf),
P;EP

¢P(a) = 1/2) ni(a, NP).
P;EP
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Let d/,a” € Y be any two action profiles that differ by a unilateral deviation, i.e.,

a, # a andad’_; = a”, for some playef; € P. The change in”(-) is

2(¢R<a/) - ¢R(aﬂ)) = Z ni(a’> Nz’R) - ni<a”> NiR>7

PP
= ny(d, NIY) —n;(a”, N + Z nj(a —nj(a”,NjR),
P,ENF
= ny(d, NIY) —n;(a”, N + Zn]aP n;(a”, P;),
P,ENF
= ny(d, NIY) —n;(a”, NI + Z ni(a', P;) — ni(a", P;),
ijNiR

= ni(a/7 NZR) - ni(a”’ NIR) + ni(a,7 NzR) - ni<a,/7 Nz'R)7

= 2(ni(d', NfY) —n;(a”, NJY)).

2

One could repeat this analysis #f () and¢?(-) to show that

Therefore the Sudoku game is in fact a potential game. Furthermore, the potential
function is always nonnegative, and achieves the value of O if and only if the Sudoku
puzzle has been solved. Therefore, all solutions to the Sudoku puzzles are in fact Nash
equilibria of the Sudoku game. However, much like the consensus problem, there may

exist suboptimal Nash equilibria.

To solve the Sudoku puzzle we will use the learning algorithm SAP as described in
Section 6.3.2. We let thg coefficient increase g$(t) = ¢/5000. Figure 6.10 shows
the evolution of the potential function during the SAP learning process. One can see
that the potential function achieves the value of 0 after approximately 17,000 iterations
which means that the puzzle has been solved. To verify, the final joint action profile is

illustrated in Figure 6.11.

To further illustrate the applicability of SAP, we simulated SAP on a Sudoku puzzle
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Evolution of Potential Function for Sudoku Game using Spatial Adaptive Play
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Figure 6.10: Evolution of Potential Function in Sudoku Puzzle Under the Learning Algorithm
Spatial Adaptive Play
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Figure 6.11: The Completed Sudoku Puzzle
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classified agery hard Once again, a solution to the puzzle was found as illustrated in

Figure 6.12.

e
2 3 _b’ Sudoku Solved! | ™=
8 1 6
6 4 2 40
7|3 1|s » |

Figure 6.12: Spatial Adaptive Play on a Sudoku Puzzle Classified as Very Hard
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It is important to note that while it took many iterations to solve the Sudoku puz-
zles, the algorithm of SAP was applied in its original form. We firmly believe that the
algorithm could be modified to decrease computation time. For example, a player’s
action set could be reduced with knowledge of the board. In particular, the action set

of playerP; in Figure 6.9 could initially have been setds = {1, 2, 3,6, 7,8,9}.

6.9 Concluding Remarks

We have proposed a game theoretic approach to cooperative control by highlighting a
connection between cooperative control problems and potential games. We introduced
a new class of games and enhanced existing learning algorithms to broaden the ap-
plicability of game theoretic methods in cooperative control setting. We demonstrated
that one could successfully implement game theoretic methods on the cooperative con-
trol problem of consensus in a variety of settings. While the main example used was
the consensus problem, the results in Theorems 6.3.1, 6.4.1, and 6.6.1 and the notion

of a sometimes weakly acyclic game is applicable to a broader class of games as well
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as other cooperative control problems.
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CHAPTER 7

Conclusions

This dissertation focused on dealing with the distributed nature of decision making and
information processing through a non-cooperative game-theoretic formulation. The
emphasis was on simple learning algorithms that guarantee convergence to a Nash
equilibrium.

We analyzed the long-term behavior of a large number of players in large-scale
games where players are limited in both their observational and computational capa-
bilities. In particular, we analyzed a version of JSFP and showed that it accommodates
inherent player limitations in information gathering and processing. Furthermore, we
showed that JSFP has guaranteed convergence to a pure Nash equilibrium in all gen-
eralized ordinal potential games, which includes but is not limited to all congestion
games, when players use some inertia either with or without exponential discounting
of the historical data. Furthermore, we introduced a modification of the traditional
no-regret algorithms that (i) exponentially discounts the memory and (ii) brings in a
notion of inertia in players’ decision process. We showed how these modifications can
lead to an entire class of regret based algorithms that provide convergence to a pure

Nash equilibrium in any weakly acyclic game.

The method of proof used for JSFP and the regret based dynamics relies on in-
ertia to derive a positive probability of a single player seeking to make an utility im-
provement, thereby increasing the potential function. This suggests a convergence rate

that is exponential in the game size, i.e., number of players and actions. It should be
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noted that inertia is simply a proof device that assures convergence for generic poten-
tial games. The proof provides just one out of multiple paths to convergence. The
simulations reflect that convergence can be much faster. Indeed, simulations suggest
that convergence is possible even in the absence of inertia. Furthermore, recent work
[HMO6] suggests that convergence rates of a broad class of distributed learning pro-
cesses can be exponential in the game size as well, and so this seems to be a limitation
in the framework of distributed learning rather than any specific learning process (as

opposed to centralized algorithms for computing an equilibrium).

We also analyzed the long-term behavior of a large number of players in large-scale
games where players only have access to the action they played and the utility they
received. Our motivation for this information restriction is that in many engineered
systems, the functional forms of utility functions are not available, and so players must
adjust their strategies through an adaptive process using only payoff measurements. In
the dynamic processes defined here, there is no explicit cooperation or communication
between players. One the one hand, this lack of explicit coordination offers an ele-
ment of robustness to a variety of uncertainties in the strategy adjustment processes.
Nonetheless, an interesting future direction would be to investigate to what degree

explicit coordination through limited communications could be beneficial.

In this payoff based setting, players are no longer capable of analyzing the util-
ity they would have received for alternative action choices as required in the regret
based algorithms and JSFP. We introduced Safe Experimentation dynamics for identi-
cal interest games, Simple Experimentation dynamics for weakly acyclic games with
noise-free utility measurements, and Sample Experimentation dynamics for weakly
acyclic games with noisy utility measurements. For all three settings, we have shown
that for sufficiently large times, the joint action taken by players will constitute a Nash

equilibrium. Furthermore, we have shown how to guarantee that a collective objective
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in a congestion game is a (non-unique) Nash equilibrium.

Lastly, we proposed a game theoretic approach to cooperative control by high-
lighting a connection between cooperative control problems and potential games. We
introduced a new class of games and enhanced existing learning algorithms to broaden
the applicability of game theoretic methods in the cooperative control setting. We
demonstrated that one could successfully implement game theoretic methods on sev-
eral cooperative control problems including consensus, dynamic sensor allocation, and
distributing routing over a network. Furthermore, we even demonstrated how the
mathematical puzzle of Sudoku can be modeled as a potential game and solved in

a distributed fashion using the learning algorithms discussed in this dissertation.

In summary, this dissertation illustrated a connection between the fields of learning
in games and cooperative control and developed several suitable learning algorithms
for a wide variety of cooperative control problems. There remains several interesting

and challenging directions for future research.
Equilibrium Selection and Utility Design:

One problem regarding a game theoretic formulation of a multi-agent system is the
existence of multiple Nash equilibria, not all of which are desirable operating condi-
tions. Is it possible to develop a methodology for designing agent utilities/objectives
and to derive implementable learning algorithms that guarantee the agents’ collective
behavior converges to a desirable Nash equilibrium? For example, the potential game
formulation of the consensus problem had suboptimal Nash equilibria, i.e., Nash equi-
libria that did not represent consensus points. The existence of these suboptimal Nash
equilibria required the use of a stochastic learning algorithm such as SAP or RSAP
to guarantee reaching a desirable Nash equilibrium. However, when we modeled the
consensus problem as a sometimes weakly acyclic game and properly designed the

utilities we were able to effectively eliminate these suboptimal Nash equilibria. Can
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this be accomplished for more general cooperative control problems?
Learning Algorithms for Stochastic Games:

In many cooperative control problems players are inherently faced with a notion of
state dependent action sets and objectives. Stochastic games, which generalize Markov
decision processes to multiple decision makers, emerge as the most natural framework
to study such cooperative systems. An important research direction is understand to
applicability of Markov games for cooperative control problems and to develop simple
computational learning algorithms for stochastic games with guaranteed convergence
results. We believe that the notion of sometimes weakly acyclic game is an initial step

in the direction or Markov games.
Learning Algorithms with Time Guarantees:

One open issue with regarding the applicability of the learning algorithms dis-
cussed in this paper is time complexity. Roughly speaking, how long will it take the
agents to reach some form of a desirable operating condition? One question that has
relevance is whether non-stochastic learning algorithms, such as JSFP and regret based
algorithms, have computational advantage over stochastic learning algorithms, such as
SAP or RSAP. If the answer to this question is an affirmative, than the notion of utility
design plays an even more important role in the applicability of these learning algo-

rithms for controlling multi-agent systems.
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